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Organizing Committee's Message 

Past research on mathematical foundation of computer science has focused mostly on the 
study of the mathematics of the software objects and very little has been done to develop 
software objects on a mathematical basis. Languages, programs, and the process of pro- 
gram execution have been identified as fundamental objects of study of computer science 
as a discipline. Moreover, algebraists and computer scientists have begun to relate the 
abstractions in computer science to the process of abstract representation in universal al- 
gebra. A strong trend of applying universal algebras as the mathematical foundation of 
computer science is in vogue. In pursuing this trend we need to observe however that there 
are differences between the objects and methods used in universal algebra and computer 
science. While abstractions used in universal algebra represent behavior of ideal (math- 
ematical) objects, abstractions in computer science represent behavior of real (physical) 
objects. While the ideal character of the abstractions in universal algebra allows systematic 
approaches of their specifications and development of formal notations naturally suited to 
handling them, computer science develops formal notations to denote real objects that are 
rarely formally specified. While an algebraic language accommodates naturally seman- 
tics, syntax, and semantics*-*syntax association of the algebraic abstractions, the syntax 
and the semantics of a computer language are specified by different mechanisms and their 
association into a language is artificial. 

The similarities of the abstractions handled in universal algebra and computer science 
lead to the development of new mathematical theories. Our conjecture is that keeping in 
view also the differences between the abstractions used in universal algebra and computer 
science, new mathematics can be created that will facilitate the construction of the (soft- 
ware) objects arising in computer science. The goal of this conference is to consolidate this 
conjecture, looking at algebraic methodology as a foundation for software technology and 
showing that universal algebra provides a practical mathematical alternative to ad hoc 
approaches used in software development. This idea was well received by the international 
and national industrial and research communities reflecting the desire for the development 
of software technology on a mathematical basis. Therefore, unlike other conferences on 
mathematical foundations of computer science, in which usually the mathematics is en- 
riched with new theories originated in computer science, the submissions to this conference 
indeed show developments in computer science that originate in mathematics. 

From the 89 submissions we had we could deduce a large spectrum of use of algebraic 
methods as mathematical basis of the new software technology. The major directions 
extracted from these submissions formed the guidelines for the organization of the technical 
program of the conference and are: 



• Formalizing the concept of a process and modeling the computer activity as an 
algebra of processes. 

• New alternatives for computer language specification and implementation based on 
universal algebras rather than grammars. 

• Formal models of the parallel and distributed systems. 

• Type algebra allowing the extension of the class of first order values. 

• General application of the algebra to software development and maintenance. 

There are 5 invited talks from the following distinguished speakers: R. Constable (Cor- 
nell University, USA), W. F. Lawvere (State University of New York at Buffalo, USA), 
J. Meseguer (SRI International, USA), M. Nivat (The University of Paris VII, France), 
and E. Wagner (IBM Thomas J. Watson Research Center, USA). Our special thanks to 
them, for taking time from their busy schedules and accepting our invitation to give a talk. 
They will provide special insight into current areas of research reflecting the theme of the 
conference. 

There are 27 contributed papers in the proceedings. Of the 89 papers submitted in 
response to the call for papers, 27 were selected for presentation at the conference. The 
selection process was carried out by the program committee along with the following ad- 
ditional reviewers: Maria Zamfir-Bleyderg (Kansas State University), Steve Bruell (Uni- 
versity of Iowa) and Mahesh Dodani (University of Iowa). Each paper was reviewed by at 
least two reviewers and the final selection was based on the composite scores, originality 
and relevance to the theme of the conference. We wish to thank all the reviewers for their 
time and effort. In addition, we wish to thank all those who submitted papers. 

The conference would not have been possible without the generous support of the 
following sponsors: Office of Naval Research, XEROX Corporation - Webster Research 
Center, and Departments of Computer Science and Mathematics of the University of Iowa. 
We would like to thank all of them for their financial assistance and interest. Finally, we 
would like to thank our secretaries Cyndi, Beth, Julie and Margaret, for their assistance 
in secretarial matters. 

An issue of the international journal "Theoretical Computer Science" will be dedicated 
to this conference. All participants at the conference are invited to submit papers to this 
issue. The submissions should be sent, no later than August 1, 1989, to: 

AMAST Organizing Committee 
Department of Computer Science 

The University of Iowa 
Iowa City, IA 52242, USA 



Conference Program 

Sunday, May 21, 6:30-8:30pm Reception 

Monday, May 22, 8:00-8:45 Registration 

Monday 22, 8:45-9:00 Welcome, Introduction: Fleck, A., Conference Chair. 

Monday 22, 9:00-12:30: Session 1 Process Algebra 
(Chair: Nelson, G., The University of Iowa, Iowa, USA) 

• 9:00-10:00 Invited talk: Minimal Finite Transition Systems, Nivat, M., Universite 
Paris VH, France. 

• 10:00-10:30 Baeten, J., Algebra of Communicating Processes. 

10:30-11:00 Coffee break 

• 11:00-11:30 Crew, R. F., Parameterized Process Category. 

• 11:30-12:00 Pigozzi, D., Equality-Test and If-Then-Else Algebras:  Axiomatization 
and Specification. 

• 12:00-12:30 Benson, D. B., Iyer, R.R., Algebraic Structure of Petri-Nets and Nonde- 
terminism. 

12:30-2:00 Lunch 

Monday 22, 2:00-6:00 Session 2 Algebraic Methods for Language Specification 
(Chair: Hatcher, W.S., University Laval, Quebec, Canada) 

• 2:00-3:00 Invited talk: Display of Graphics and their Applications, as Exemplified by 
2-Categories and Hegelian "Taco", William F. Lawvere, Buffalo University, USA. 

• 3:00-3:30:  Bidoit, M., The Stratified Loose Semantics:  An Attempt to Provide an 
Adequate Algebraic Model of Modularity. 

• 3:30-4:00 Jacobs, D., Ehrig, H., Fey, W., Hansen H., Lowe M., Algebraic Concepts 
for the Evolution of Module Families 

4:00-4:30 Coffee break 

• 4:30-5:00 Bradley L., An Algebraic Approach to the Early Stages of Language Design. 

• 5:00-5:30 Talcott, C. L., Algebraic Methods in Programming Language Theory. 

• 5:30-6:00 Parpucea, I., Dynamic Extension of Programming Language Semantics. 

• 7:30 Social hour 



Tuesday 23, 8:30-12 Session 3 Parallel and Distributed Processing 
(Chair: Cornell, A., Brigham Young University, Utah, USA) 

• 8:30-9:30 Invited talk: General Logics, Jose Mesegu'er, SRI, USA. 

• 9:30-10:00 Logrippo, L., LOTOS: An Algebraic Specification Language for Distributed 
Systems. 

10:00-10:30 Coffee break 

• 10:30-11:00 Miller, S., Kühl, J., Modeling Distributed Systems as Distributed Data 
Types. 

• 11:00-11:30 Ionescu, D., Wen, L., A Formal Mathematical Model for Detecting the 
Subroutine Dependencies: A Logic Programming Approach. 

• 11:30-12 Martin, G.A.R., Norris, M.T., Everett, R.P., Shields, M.W., The CCS In- 
terface Equation -An Example of Specification Construction Using Rigorous Tech- 
niques. 

12-1:30 Lunch 

Tuesday 23, 1:30-5:30 Session 4 Types, Polymorphism and A-Calculus 
(Chair: Main, M., University of Colorado at Boulder, Colorado, USA) 

• 1:30-2:30 Invited talk: Implementing Mathematics as an Approach for Formal Rea- 
soning, R. Constable, Cornell University, USA. 

• 2:30-3:00 Hatcher, W.S., Tonga, M., Pairings on Lambda Algebras. 

• 3:00-3:30 Zhang, H., Constructor Models as Abstract Data Types. 

3:30-4:00 Coffee break 

• 4:00-4:30 Riecke, J.G., Bloom, B., LCF Should be Lifted. 

• 4:30-5:00 Scollo, G., Manca, V., Salibra, A., DELTA: A Deduction System Integrating 
Equational Logic and Type Assignment. 

• 5:00-5:30 Janicki, R., Müldner, T., On Algebraic Transformations of Sequential Spec- 
ifications. 

• 6:30 Banquet (Buses depart) 



Wednesday 24, 8:30-12 Session 5 Algebraic Software Development 
(Chair: Schmidt, D., Kansas State University, Kansas, USA) 

• 8:30-9:30 Invited talk: An Algebraically Specified Language for Data Directed Design, 
Eric Wagner, IBM Thomas J. Watson Center, USA. 

• 9:30-10:00 Rattray, d.M., Modeling the Software Process. 

10:00-10:30 Coffee break 

• 10:30-11:00 Wells, C, Path Grammars. 

• 11:00-11:30 Pratt, V., Enriched Categories and Floyd- Warshall Connection. 

• 11:30-12 Dauchet, M., Tison, S., Finite Automata, Algorithms and Software Design. 

12-1:30 Lunch 

Wednesday 24, 1:30-5:00 Session 6 Algebraic Semantics of Programs 
(Chair: Rattray, C.I.M., University of Stirling, Stirling, Scotland) 

• 1:30-2:00 Schmidt, D., Even, S., Category-Sorted Algebra-Based Action Semantics. 

• 2:00-2:30 Vidal, D., The De Bruijn Algebra 

• 2:30-3:00 Oguztuzun, H.M., A Game Characterization of the Observational Equiva- 
lence of Processes. 

3:00-3:30 Coffee break 

• 3:30-4:00 Wijland, W.P., Van Glabbek R.J., Refinement in Branching Time Seman- 
tics. 

• 4:00-4:30 Kent, R.E., Dialectical Program Semantics. 

• 4:30-5:00 Concluding remarks 



ON MINIMAL FINITE TRANSITION SYSTEMS1 

Maurice Nivat, L.I.T.P., University Paris VII 

Introduction 

The theory of finite automata, which we shall rather call finite 
transition systems is certainly the oldest chapter of theoretical 
computer science. Most of the algebraic results come from the 
consideration of deterministic automata since there is in each class of 
automata recognizing the same language a "minimal" one which has 
indeed the smallest number of states but also is the image in a 
morphism of all the automata in the class. Every knows how to 
compute this minimal automaton which is unique from either a given 
automaton or a rational expression representing its language. 
Moreover this automaton is closely linked with the syntactic monoid 
ant the so called Nerode equivalence which is the smallest right- 
regular equivalence relation which saturates the language. 

The situation is entirely different if one considers non 
deterministic finite transition systems : it is immediate that one may 
have two equivalent finite transition systems, recognizing the same 
language, which have the same smallest number of states and which 
cannot be mapped by morphisms onto a same smaller finite transition 
system recognizing the same language. The study of finite transition 
systems has been greatly exhauced in recent years by the construction 
of various models of parallel or distributed systems. Among these 
models the calculus CCS of Robin Milner has been extremely 

Part of  an unfinished paper 



influential. In this paper we borrow many ideas from R. Milner's 
work especially the notion of observational equivalence, and its 
reformulation by Andre Arnold and Anne Dicky using morphisms 
which we call MR-morphisms in the sequel. It is a restricted notion 
of equivalence based on the idea that two systems are equivalent if 
each one simulates the other one. The simulation of Si by S2 means 
that for every possible behaviour of Si the exists a simulating 
behaviour of S2 with the property that at each instant of time S2 
will be in a state in which it can perform all the actions which Si 

may perform and only those. 

We introduce a more general notion of equivalence using the 
family of functional morphisms : a functional morphism of Si onto 
S2 has the property that every behaviour (or computation) of S2 is 
the image of a behaviour of Si . We thus characterize the 
equivalence Si ~F S2 <=> &(Si) = £(S2) where &(S) is the 

global language of a system ie the set of traces of all the 
computations from any state to any state. The characterization is 
extremely similar to the characterization of MR morphisms. 

In a last chapter we consider deterministic systems and 
surprisingly we discover that under various assumptions (right 
separatedness, strong connectivity) the functional morphisms happen 

to be MR morphisms. 

(0 



I. Morphisms and quotients of Finite Transition Systems 

We shall use the following definitions and notations. 

If S = <Q,T> is a FTS and R is an equivalence relation on Q 
we define the quotient of S by R as the FTS S/R = <Q/R, T/R> 

where 

Q/R is the set of equivalence classes modulo R. 

(We denote [q]R or simply [q] the equivalence class of q). 

T/R is the set of transitions 

T/R = {([q] A [q1]) I 3 qi 6 [q] 3 q'ie [q*] : (qi A q'i) e T. 

A quotient of S is also the image of S by a morphism : a 
morphism h of S is defined by a mapping h of Q onto a finite 
set h(Q), the image h(S) being the FTS 

h(S) = <h(Q), h(T)> where 

h(T) = {(h(q) A h(q')) I (q A q') e T} 

Clearly if R is an equivalence relation, the canonical mapping 
hR of S onto Q/R is a morphism of S onto S/R and we can 

write hR(S) = S/R. 

Conversely a mapping h of Q onto h(Q) defines the 
canonical equivalence relation Rh such that 

q ~ Rh q'<=» h(q) = h(q') 
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and the morphic image h(S) is isomorphic to the quotient S/Rh- 

A computation of the transition system S = <Q,T> is 
denoted qo ^ qi ^ q2 ^ qn assuring that for all i e [n] qi-i -4- 
qi is a transition of T. 

Wedenote Comp(S, q, q') the set of all computations 

q0 % qi %       ^ qn such that qo = q and q' = qn. 

The sets Comp(S, q, Q) and Comp(S,Q,q') are defined as 

Comp(S, q, Q) = u {Comp(S, q, q*) Iq'eQ} 

Comp(S, Q, q') = u {Comp(S, q, q*) I q e Q} 

The trace of the computation c = (qo -* qi -».. -^ qn) is A,(c) 

= aia2 .-an which is a word in A+- 

And we define the following sets of traces 

L(S, q, q*) = MComp(S, q, q'))  if q * q' 
= {e} u k(Comp(S, q, q')) if q =q' 

8 
(we assume that there is always an empty computation q -» q 

from any state q to itself) 

L(S, q, Q) = u {US, q, q') Iq'eQ} 

L(S, Q, q) = u {L(S, q, q') I q e Q} 

And eventually we denote   £(S)   the global language of  S 

IZ 



defined by £(S) = u {L(S, q, q') I q, q' e Q}. 

We note that £&(S) is factorial ie satisfies 

- for all fi, f2, f3 e A+   fif2f3 e &(S) => f2e £(S). 

The following properties are immediate 

ai 
Let   h   be a morphism of   S   onto   h(S) and c = qo -? 

qi%        -^  qn  be  a  computation of S   then  h(c) = h(ao) -4 

h(ai)-»... 3 h(qn) is a computation of h(S). 

Thus we have 

Property For every morphism h of a transition system S = 
<Q,T> one has   h {Comp  (5, q, q'))   £. Comp  (h (S ), h (q ), h 

W)) 
L (5, q, q')s.L Qi (S ), h(q),h (q' ))  and 

It is not generally true that these inclusions are equalities and the 
morphismes for which they are indeed equalities will play a major 
role in the sequel. 

Definition The morphism h of S onto h (5 ) is functional iff 
every computation in h(S) is the image under h of a computation 

in S. 

Equivalence of FTS 

Several notions of equivalences will be considered in the present 
paper. 

IB 



Three of them will be attached to families of morphisms which 

have the Church-Rosser property. 

The family H of morphisms is a Church-Rosser family (or is 

CR)iff 

- the identity belongs to H 

- H is closed under composition 

- if S is a FTS and hi, I12 are the H-morphism of S onto 

hi(S) = Si and h2(S) = S2 them there exist two H-morphisms h*i 

and h'2   such that h'i(Si) = h'2(S2). 

This last property can be visualized by the diamond diagram 

Property 1.2  // H  is a Church-Rosser family of morphisms then 

the relation =n defined by 

Si SH S2 <=» 3 hi, h2 e H hi(Si) = h2(S2) 

is an equivalence relation between transition systems which we call 

the lower H-equivalence. 

Proof It is an immediate consequence of the CR property. If Si =H 

S2 and S2 ^H S3 we have the following diagram 

/</ 



3     which we can complete 

We get 

and this H is closed by composition S6 is the image of Si and S3 
by the two H-morphisms hi 0 h6 and I13 0114 (we say also that SO 

is a common H-quotient of Si and S3). 

Property 1.3  The family Mor of all morphisms is CR 

Proof We consider the two morphisms hi and I12 of S onto 
hi(S) = Siand h2(S)=S2. 

We denote Ri and R2 the two equivalence relations on Q 
corresponding to hi and I12 and we call R the smallest equivalence 
relation on Q containing Ri and R2. 

We recall that R is the transitive closure of Ri u R2 which 

means that 

15 



q R q' <=> 3 qo,.»,qh such that 
qo = q, q' = qh and for all i e [h]   qi-i Ri qi or qi-i R2 qi- 

The morphism h corresponding to R maps S onto S' and it 
is clear that h can be factorized in hi o h'i and I12 o h'2 since the 
equivalence classes modulo R are union of equivalence classes 
modulo Ri (resp. R2). D 

Unfortunately the lower equivalence =Mor is not very 

interesting, since we have the following 

Property 1.4 Let A' be a subset of A  and denote  SA' the FTS 
with only one state qo and the set of transitions 

{qo-^qoiae A'} 

Then the mapping  h  of S = <Q,T > defined by  h(q) = qo 
for all q e Q    is a morphism of S onto  SA'   iff A' = X(T) = 

[aeA \3q,q'G Q (qAq')e T}. 

Proof obvious 

And the property 1.3 implies immediately that 

Si=MorS2»^(Tl) = X(T2). 

It is clear since one can map Si onto SAX if Ai = X,(Ti) and 

S2 onto SA2 
if A2 = W2) and clearly SAi =Mor SA2 

iff Al = A2. 

We now introduce a more interesting family of morphisms 
denoted    MR : a morphism in    MR    is called a right Milner 

/<* 



morphism, since the equivalence associated with MR has been first 
considered by R. Milner and we shall define later a family of left 

Milner morphisms. 

Definition The morphism h of S is a right Milner morphism 

(or an MR morphism) iff it satisfies 

V q, q\ qi e Q , V a e A 

(q A qi) e T and h(q') = h(q) imply 3 q'i : (q* -^ q'i) e T 

and h(q'i) = h(qi) 

Property 1.5   The family   MR   of right Milner morphism is a 

Church Rosser family. 

Proof It is immediate from the proof of property 1.2. We define R 
as the transitive closure of Ri and R2 and we assume that q R q' ie 
there exist qo,..., qh such that qo = q, q' = qk and for all is 
[h] qi-i (Ri u R2) qi- Then we assume the existence of a transition 
q0 A q0 : the morphisms hi and I12 being RM we know that there 

exists qi such that qi -> qi and qi Ri qo or qi R2 qo 
according to whether qoRiqi or qoR2qi- 

— a 
By an easy induction on k we can find    qh such that qk -> 

qk and    qk R   qo» thus proving that IIR is RM. It is easy then to 
prove there exist two RM morphisms h'i and h'2 such that h.R = hi 0 
h'i = h2 0 h'2.D 

We have to remark 

Property 1.6 Every MR  morphisms is a functional morphism. 

il 



Proof This is an immediate consequence of the definition. Every 
a 

computation of length 1, ie every computation of the form h(q) -> 
h(q') in h(S) is the image under h of some computation qi -> q'i 
in S by the very definition of a morphism. Assume we have proved 
that every computation of length    n    in    S    and consider a 
computation of length n+1 in h(S) 

qo -^   qi -* ••• -^   qn ^    qn+l 

By induction there exists a computation in S 

qo% qi i£ ...is qn such that for all ie {0,...,n} 

h(qi) = qi. then since h is MR and we know that there exist a 
transition q "S*1 qn+l with h(qn) = qn and h(qn+l) = qn+1 from 
the fact that h(qn) = h(qn) we can infer the existence a a transition 
qn^1 qn+1 for some qn+i satisfying h(qn+i) = qn+l-Thus qo4 

qi % ... i| qn "SJ1 qn+1 is a computation in S whose image by h is 

the computation  qo~*  qi -^ •••  ^    qn+l • D 

Partition corresponding to right Milner morphisms 

For any given morphism h of S one has a partition of the set 
of states Q which is the partition in equivalence classes modulo h. 
And conversely if Q = Qiu...u Qh is a partition of Q. It defines a 
morphism of S : one maps all the states in each component Qi 

onto a single state i e [h]. 

In this paragraph we characterize the MR-partitions 

corresponding to MR morphism. 

/8 



Restrictions of a transition system 

If Q' is a subset of Q we define the restriction of S = <Q,T> 

to Q' as the system S I Q' given by 

- its set of states Q' 
- the set of transitions T I Q' = {t e T I <x(t) e Q' and 

ß (t) e Q'} 

The subset Q' of Q is said to be monoidal iff 
&(S I Q') = X(T I Q')* 

The set X(T I Q')* is the subset of the alphabet A formed by 
all the letters which label a transition of T I Q' or equivalently all 
the letters which label a transition in T whose origin and extremity 
belong to Q'. We allow X(J I Q') to be empty : then & (S I Q) = 

{e}. The first remark is 

Property 1.7 Each component of an MR partition of Q is 

monoidal. 

Proof Let Q = Qi u ... u Qk be the MR partition corresponding 
to the MR-morphism h which maps for all i e [k] all the elements 
of Qi onto the state i of h(Q) = [h]. 

Clearly the set of transitions of h(S) contains all the 
transitions i -» i for all i e [h] and a e MT I Qi). 

In fact h(T) I {i} = {i A i I a e X(T I Qi). 

This proves that &<S I Qi) £. UT I Qi)* = &<h(S) I {i}). 

tf 



The reverse inclusion comes from the fact that the MR 
morphism h is also functional : every computation of h(S) I {i} is 
the image of a computation of S I Qi whence 

&(h(S)l{i})Ä&(SIQi).       0 

In fact we can prove a stronger property : in the same situation 

as above one has 

L(S I Qi, qi, Qi) = UT I Qi)* 

For every computation c' in h(S) I {i} and every state qi in 
Qi one can find a computation c in S I Qi such that h(c) = c' and 
a(c) = qi, this is just a new application of the MR condition.        D 

We can call strongly right monoidal a subset of Q such that 
for all qi e Qi  L(S I Qi, qi, Qi) = X(J I Qi)* and then state the 

Theorem 1.1 

The partition Qi = Qi uQ2V ... u Qk is an MR partition iff 

-for all ie [h] Qi is strongly right monoi'dal 

-for all i,j e [h] if there exists a transition  t suchthat 
a(t ) e Qi, ß(r ) e Q,  and X(t) = a then for all  qi e Qi there 
exists a transition t' such that a(t' ) = qi, ß(/') e Qj and  X(t) = a. 

Proof The only if part follows immediately from property 1.7 and 
the MR condition. 

Conversely the morphism corresponding to the partition is MR. 

20 



A transition q A q' in T may be either a transition of T I Qi for 
some i or a transition from Qi to Qj where i *j. In the first case 
q, q' € Qi and state q" is equivalent to q modulo h iff q" 6 Qi: 
we certainly have then for all such q" e Qi a transition labeled by a, 
with q" as origin and terminating in Qi for otherwise 

L(S I Qi, q", Qi) would be different from X(T I Qi)*. 

In the second case we have q, q" e Qi and q' E QJ, where j * 
i and the condition of the theorem imply the existence of a transition 
labeled by a with q" as origin and terminating in Qj. D 

This theorem gives us a procedure to find all the MR quotients 
of a given TS. We look for all the strongly right monoi'dal subsets of 
Q : clearly every subset reduced to one state is strongly right 
monoi'dal and we can form partitions. For each of them we check the 
MR condition. 

Exemple 

In order to compute all the MR quotients of Si we need look at 

all the MR partition 

- certainly the trivial one {1, 2, 3, 4, 5} = {1} u {2} u {3} u 
{4} u {5} is MR (this is a general phenomen) 

21 



- we can find only 2 strongly right monoidal subsets of   Q 
{2,3}  is  such that L(S I {2,3}, 2, {2,3}) = L(S I {2,3}, 3, {2,3} = 

(a u b)* 
{4,5} is such that L(S I {4,5}, 4, {4,5}) = L(S I {4,5}, 5, {4,5}) = c* 

And we check that {1} u {2,3} u {4,5} is an MR partition : 
we just have to check that there exists a transition from 3 to {4,5} 
labeled by c since there exists a transition from 2 to {4,5} labeled 

by c. 

Then we can form the MR quotient S2 

There are no more MR partitions. 

A slight alteration of Si gives us a MR minimal transition 

system 

2.1. 



for now {4,5}  is not strongly right monoidal. 

Thus the only partition which could be MR is 

{l}u{2,3}u{4}u{5} 

but it is not since we have 2 -> 4 and for the partition to be MR 
there should be a transition 3 -> 4. Thus S3 has no MR quotient 

different from itself and is MR minimal. 

23 



II. Functional equivalence 

A family H of morphism is said to be anti-Church Rosser 
(abbreviated ACR) iff it satisfies the properties 

-H contains the identity 

- H is closed under composition 
-for all Si,S2, S3 andmorphisms hi and I12 in H suchthat 

S3 =hi(Si) = h2(S2) there exists a transition system S and two H- 

morphisms h'i and h*2 satisfying 

hi(S) = Si and h2(S) = S2. 

Property II.l    If the family   H   is ACR the relation between 

transition systems defined by 

Si~HS2^3S3hi,h2eH   Si=hi(S) and S2 = h2(S) 

in an equivalence relation. 

Proof   : Indeed we just have to check the transitivity of this 

relation. 

If SI~H S2 and S2 ~H S3 we are in the situation described by 

the following diagram 

2.H 



S' 

and using the ACR property we can complete this diagram to get 

12 3 

Since ho hi and h'0 h'3 are in H which is closed by 
composition this diagram proves that Si ~ S3 

Property II.2  The family Mor of all morphisms is ACR. 

Proof We consider the amalgamated product Si ® S2 of two 

transitions systems. 

This product is the transition system S given by 

Q = Qix Q2 

T = Ti ® T2 = {(qi, q2) A (q'i, q'2) I qi A 

q'l)e Ti and (q2 A q'2) e T2} 

The computations of Si ® S2 are amalgamated products of 
computations of Si and S2 ie 
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(qo qo) ^ (qi» qi) ^ - ^ fan» qn) is a computation of 
Si <g> S2 iff two projections 

q(A qi^ - ^ (qn, qn and    qo ^   qi ^ ...-^ qn 

are computations of Si and S2 respectively. 

If S3 = hi(Si) = ti2(S2) is a common quotient of Si and S2 
and 7ci,3C2 are the two projections of Qi X Q2 onto Qi and Q2 

one has Si = TCI(SI <8> S2) and S2 = ^2(Si ® S2). 

Clearly TCI(TI® T2)^Ti. 

The reverse inclusion comes from the easy fact that if 

hi(Si)=h2(S2) then by property 1.3 X(Ti) = MT2). 

Thus for every (qi -> q'l) e Ti there exists  (q2 -> q'2) e T2 

with the same label a and Ti® T2 contains  (qi, q2) -» (q'l, q'2) 
a , r-, 

where first projection is qi -* q 1. U 

The two equivalences  =Mor and ~Mor corresponding to the 

family of all morphisms are identical ie one has 

Si =Mor S2 <=> H?l) = MT2) <=> Si ~Mor S2 

Property II.2   The family  F of functional morphismls is ACR. 

We prove the more precise property. 
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Property II.3 If there exists two functional morphisms h 2 and 
h 2 such that h i(5 1) = h 2(5 2) then the two projections of S \®S 2 
onto S 1 and S 2 are functional. 

Proof Assume hi (Si) = h2(S2) with hi, I12 e F. 

Every computation in S3 =hi(Si) = h2(S2) is the image under 
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hi (resp. I12) of a computation in Si  (resp. S2).Thus if qo -> qi -4 
^ qn is a computation in S3 there exist one computation in Si, 

—   a   — an    — 
namely   qi -»   q2 ->... -^    qn 

and one computation in S2, namely, 

qo -^ qi-^ — -^ qn which satisfy 

V i G {0,...,n} : hi( qi) = qi and h2(qj) = qi 

The amalgamated product of these two computations, namely, 

( qo,q A (qi,q) 4 ...-5 ( qn, qn) 

is a computation in Si® S2. 

Thus for every computation ci in Si one can find a 
computation C2 in S2 such that h2(c2) = hi(ci) and ci ® C2 is a 
computation in Si® S2 clearly satisfying 7ti(ci® C2) = ci. 

We have proved property II.3 and property H.2. 

Definition  The equivalence ^F  associated to the ACR family of 
functional morphisms is called the functional equivalence. 
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Theorem II.1 Two transitions systems are functionally equivalent 
iff their global languages are identical. 

Proof SI~H S2 implies the existence of two functional morphisms 
Li and I12 and a transition system S suchthat Si=hi(S) and S2 = 
h2(S). Since hi and I12 are functional we have 

£(Si) = £(S) = £(S2) 

Conversely we assume that %{S\)- £(S2) : we prove that 
&(Si) = 56/(S2) = &(Si® S2) and that the two projections of 

Si ® S2 onto Si and S2 are functional. 

Consider a word u = ai...an in &(Si) and a computation c = 

q0 % qi % „.% qn of Si such that X(c) = u. Since u belongs to 

&(S2) there exists a computation c= qo^> qi-4 ...-9 qn of 

S2 such that X( c) = u. 

The amalgamated product of c and c is a computation of 
Si® S2 such that A,(c ® c) = u, m(c ® c) = c, mic ® c) = c. 
Thus Se,(Si)£_£(S2) implies St (Si) = &(Si® S2) and the 
functionality of 711. The proof follows immediately. D 
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Functional partitions 

In this paragraph we characterize the partitions corresponding 
to functional morphisms, called functional partitions or F-partitions. 

We first remark that 

Property III.4 

Each component of a F-partition is a monoidal subset of Q. 

Proof 

It is immediate from the proof of property 1.7 and the fact that 
the morphism h is functional. This implies that Comp(h(S) I {i}, 
{i}, {i}) = h(Comp(S I Qi, Qi, Qi) whence £(h(S) I {i}) = A,(T I 

Qi)* = &(S I Qi).      D 

Definition II.  Let Q' be a monoidal subset of Q such that X(T I 
Q') = A'  and  &(S I Qi) = A*i. We say that a pair (Q'i, Q'2)  of 

subsets of Q' is a complete input-output system for Q' iff 

A1* = U {L(S I Q'.q'i, q'2) I q'l 6 Q'l, q*2 6 Q'2} 

Theorem II.2    The  following  conditions  are necessary  and 
sufficient for a partition Q = Qiu ...u Qh to be functional 

- for all i e [h] Qi is monoidal 
- for all i,j e [h] and all a e A there exists two subsets of Qi 

denoted Qy,a and Qi,a,j which satisfy the following conditions : 

-Qi,j,a = 0 iff (teTla(t)e Qj, ß(t) e Qi, X(t) = a} = 0 

- Qi,aj = 0 iff {t e T I a(t) e Qi, ß(t) e Qj, X(t) = a} = 0 

- for all i,j,a, 
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V qj e Qj,a,i V qi Qe Qy,a (qj -> qi) e T 
(Qi, Qi,a,j)  and  (Qy.a, Qi)   are complete input-output 

systems of Qi if Qi,a,j (resp. Qi,j,a) is not empty 

- for all ijj e [h ], a,b e A if 

Qi,j,a and Qi,M are non empty 
(Qij,a , Qi,b,i) is a complete input-output system of Qi 

Proof These conditions are exactly the necessary conditions so that 
we can make a computation of S from succession of computations in 
S I Qij followed by a transition from Qix to Qi2 then a computation 
in S I Qi2 followed by a transition from Qi2 to Qi3 and so on. 

Intuitively the situation is described by the following figure 

«i 

Oy*'^1 a1!'*1 

QiVi2>b 

We have only expressed that there are enough transitions 
between the components of a partition : for all word f in A*i2 

there exists a computation of S I Qi2 from one state in Qi2 ira 
which can receive a transition labeled by a coming from qi2 to the 
origin of a transition labeled by b going to Qiz . 

So 



Proof A partition satisfying the conditions of theorem H2 is an F- 

partition : 

- a computation in h(S) where h maps Q onto [h] can be 

factorized as follows 

qii 
fi^) qj2 

fig} qj3 _> Ji&P qjm of S I Qj such that all the qj 

belong to Qj. 

The definition of complete input-output systems implies that we 
can always take (qjp qjm) in ( Qi, <3i) if ( Qi, Öi) is a complete 

input-output system for Qi. 

Then we can use the condition of theorem II.2 to find a 
computation in S which is mapped by h onto a given computation 
c' of h(S). If the computation c' contains as a factor 

... ii (-4 i2 -4 i2 -4 i3  ... 

we shall replace this factor by 

... # qi2 . 1 ^ qi2,2 f2-42) -. ^ qi2,m 3 where (q^ , 
qi2,m) e (Qi^ii^ . Qi2,a2,i3) 

wnicft is a complete input-output 
system for Qi2- 

The leftmost and right most factors will be replaced by 

fi(l)   fi(m) , _ n qij.1 ^  ». ~>   qii.ni where qi1>m e Qi^a^ 
fn(l)    fn(m) , ~ 

qim,l *■*   ... n-+    qin,m where qin,l e Qin,in_i,an 
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We have clearly build a computation c in S such that h(c) = c'. 

The same argument shows the necessity of the condition : 
assume that Q = Qiu ...u Qk is an F-partition and consider i, j, 1 
e [k], a, be A suchthat i*j and i*i... if Qi,a,j * 0 and 
Qi,b,l ^ 0 we have in h(S) the computation c': 

.a.f.b, 
j —> i —» l —> 1 

If (Qi,j,a» Qi,b,l) is not a complete input output system for 
Qi then we can'find an   f e &(h(S) I {i})    such that for all 

computations qix -» qin of S I Qi   either  q^ «5  Qij,a  or qin £ 

Qi,b,L 

Thus there cannot exist a computation in S 

a f        b 
qj -> q»! -> qin -> qi 

which is mapped by h on c'. D 

Exemple The following system Si has no F-quotient. 
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No subset of {1, 2, 3} with more than one element is monoidal. Let 
us compute the deterministic equivalent S2 of Si. The deterministic 
equivalent S2 of Si is surely functionally equivalent to Si. 

The system S2 has an F-quotient (and one only). 

The only monoidal subset of {12, 123, 23, 3}  with two elements is 
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{23, 3}  but the corresponding partition 

take 

{12} u {23, 3} u {123}   is not an F-partition for we can only 

Q{23,3}, {12}, a = {23} 
and L(S2 I {23, 3}, 23, {23, 3}) = a (a u b)* * (a u b)* 

The only monoidal subset with 3 elements is   {123,23,3}  and the 

partition {12} u {123, 23, 3} is an F-partition for we can take 

Q{123, 23, 3}, {12}, a = {23} and Q{123, 232, 3}, c, {12} = {123, 23, 3} 

And   {23}, {123, 23, 3}   is a complete input output system for 

{123,23,3}. 

The corresponding F-quotient of S2 is S3 

3      c 
isomorphic to 

Since  S2~FSI  and S2~FS3  we have Si ~F S3. We can 

check it by computing Si ® S3 = S4 
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Algebra and Communicating Processes 

Jos CM. Baeten* 
Department of Software Technology, 

Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands. 

As an example of the use of algebraic methods In computer science, the 
theory ACP, dealing with concurrent communicating processes. Is 
described. 

1. INTRODUCTION. . 
Process algebra is the study of concurrent communicating processes in an algebraic 
framework. As the initiator of this field we consider R. MILNER, with his Calculus of 
Communicating Systems [M80], which formed the basis for most of the axiom systems in 
the theory ACP of BERGSTRA & KLOP [BK84, BK85]. The endeavor of process algebra 
is to treat concurrency theory (the theory of concurrent communicating processes) in an 
axiomatic way, just as for instance the study of mathematical objects as groups or fields 
starts with an axiomatization of the intended objects. The axiomatic method which concerns 
us, is algebraic in the sense that we consider structures (also called process algebras by 
some people) which are models of some set of (mostly) equational axioms; these structures 
are equipped with several operators. Thus, we use the term algebra in the sense of model 
theory. 

There is ample motivation for such an axiomatic-algebraic approach to concurrency 
theory. The main reason is that there is not one definite notion of process. There is a 
staggering amount of properties which one may or may not attribute to processes, there are 
dozens of views (semantics) which one may have on (a particular kind of) processes, and 
there are infinitely many models of processes. So an attempt to organize this field of 
process theories leads very naturally and almost unavoidably to an axiomatic methodology 
- and a curious consequence is that one has to answer the question "What is a process?" 
with the seemingly circular answer "A process is something that obeys a certain set of 
axioms ... for processes". The axiomatic method has proven effective in mathematics and 
mathematical logic - and in our opinion it has its merits in computer science as wel, if only 
for its organizing and unifying power. 

Next to the organizing role of this set-up with axiom systems, their models and the 
study of their relations, we have the obvious computational aspect. Even more than in 
mathematics and mathematical logic, in computer science it is algebra that counts - the well- 
known etymology of the word should be convincing enough. For instance, in a system 
verification the use of transition diagrams may be very illuminating, but especially for 
larger systems it is evidently desirable to have a formalized mathematical language at our 
disposal in which specifications, computations, proofs can be given in what is in principle 
a linear notation (evidenced by [B89]). Only then can we hope to succeed in attempts to 
mechanize our dealings with the objects of interest In our case the mathematical language 
is algebraic, with basic constants, operators to construct larger processes, and equations 
defining the nature of the processes under consideration. (The format of pure equations is 
not always enough, though. On occasion, conditional equations and some infinitary proof 
rules are used.) To be specific: we will always insist on the use of congruences, rather than 
mere equivalences in the construction of process algebras; this in order to preserve the 
purely algebraic format 

* Partial support received by ESPRIT contract 432, A formal integrated approach to industrial software 
development (METEOR), and RACE contract 1046, Specification and Programming Environment for 
Communication Software (SPECS). 

25 



A further advantage of the use of the axiomatic-algebraic method is that the entire 
apparatus of mathematical logic and the theory of abstract data types is at our disposal. One 
can study extensions of axiom systems, homomorphisms of the corresponding process 
algebras. One can formulate exact statements as to the relative expressibility of some 
process operators (non-definability results). 

Of course, the present axiomatizations for concurrency theory do not cover the entire 
spectrum of interest Several aspects of processes are as yet not well treated in the algebraic 
framework. The most notable examples concern the real-time behaviour of processes, and 
what is called true concurrency (non-interleaving semantics). Algebraic theories for these 
aspects are under development at the moment (see e.g. VAN GLABBEEK & VAANDRAGER 

In our view, process algebra can be seen as a worthy descendant of 'classical' automata 
theory as it originated three or four decades ago. The crucial difference is that nowadays 
one is interested not merely in the execution traces (or language) of one automaton, but m 
the behaviour of systems of communicating automata. As Milner and also HOARE [H85 j 
have discovered, it is then for several purposes no longer sufficient to abstract the 
behaviour of a process to a language of execution traces. Instead, one has to work with a 
more discriminating process semantics, in which also the timing of choices of a system 
component is taken into account Mathematically, this difference is very sharply expressed 
in the equation x-(y + z) = x-y + x-z, where + denotes choice and • is sequential 
composition; x,y ,z are processes. If one is interested in languages of execution traces (trace 
semantics), this equations holds; but in process algebra it will in general not hold. 
Nevertheless, process algebra retains the option of adding the equation and studying its 
effect In fact one goal of process algebra is to form a uniform framework in which several 
different process semantics can be compared and related. One can call this comparative 
concurrency semantics. 

We bring structure in our theory of process algebra by modularization, i.e. we start 
from a minimal theory (containing only the operators +,•), and then we add new features 
one at at time. This allows us to study features in isolation, and to combine the modules of 
the theory in different ways. 

In the following, we give a survey of the theory ACP (Algebra of Communicating 
Processes) as introduced in [BK84]. 

2. BASIC PROCESS ALGEBRA. 
Process algebra starts with a given set A of atomic actions a,b,c These actions are 
taken to be indivisible and to have no duration. When we describe a certain application, we 
will have to be specify what are the atomic actions involved. Thus, the set A will form a 
parameter of our theory. Each atomic action is a constant in the theory. Actions can be 
combined into composite processes by the operators + and •. + is alternative 
composition, choice or sum, and • is sequential composition or product Thus, (a 
+b)-C is the process that first chooses between executing a or b, next executes C and then 
terminates. Since time has a direction, product is not commutative; but sum is, and in fact it 
is stipulated that the options (summands) possible in some state of the process form a set. 
Formally, we will require that all processes x,y,... satisfy the axioms in table 1. 

x + y = y + x A1 

(x + y) + z = x + (y + z) A2 
x + x = x A3 
(x + y)-z = x-z + y-z A4 

(x-y)-z = x-(yz) A5_ 
Table 1. BPA. 

We often leave out brackets and the product sign, as in regular algebra. Product will bind 
more strongly than other operators, sum will bind more weakly. Thus, xy + z means (x-y) 
+ z. The theory in table 1 is called Basic Process Algebra or BPA. 
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We do not include an axiom x(y + z) = xy + xz because the moment of choice in both 
processes is different, and this difference is important in many applications. For instance, a 
game of Russian roulette could be described by spin-click + spin-bang, but not by 
spin-(click + bang). 

3. TERMINATION. 
Let us again consider sequential composition of processes. If in process x-y component x 
has performed all its actions, and can do nothing more, it has terminated successfully and 
process y starts. But if process x consists of a number of concurrently operating 
components, that at some point are all waiting for a communication from another 
component, then x also cannot perform any more actions, but in such a situation we do not 
want that y start. In the second case, we say x has terminated unsuccessfully, is in a state 
of deadlock, and no action is possible any more. Thus, we want to distinguish between 
successful and unsuccessful termination. We use the constant 8 for unsuccessful 
termination. The laws for this constant are in table 2. 

x + 5 = x A6 
8-x = 8  A7 
Table 2. Deadlock. 

Now we can give a more formal argument for rejection of the law x(y + z) = xy + xz: a 
consequence is ab = a(b + 8) = ab + aS, and this means that a process with deadlock 
possibility is equal to one without In most applications, it is important to model deadlock 
behaviour, so this is an unwanted identification. 

It sometimes has advantages to also include a special constant for successful 
termination. For this purpose, the empty process e is often used, with laws ex = x = xe. 

4. INTERLEAVING. 
If we look at the parallel composition x II y of processes x and y from the outside, we 
will see that the atomic actions of x and y are interleaved or merged in time (since we 
assume they have no duration). Thus, at each point in time, the next action will either come 
from x or from y. In order to get a finite axiomatisation for the parallel composition or 
merge, we will use an auxiliary operator IL (left-merge). xlLy is just like x II y, but with the 
restriction that the first step comes from x. 

xlly = xll_y + ylLx Ml 
alLx = ax M2 
axlLy = a(xlly) M3 
(x + y)ILz = xlLz + ylLz M4 

The theory with constants A, operators +,-, II, IL and axioms in tables 1 and 3 is called PA. 
Axioms M2 and M3 are actually axiom schemes: we have such an axiom for each a e 
Au{8}. With the axioms of PA, we can eliminate the operators II, IL from all closed terms. 
In fact, this elimination takes the form of a term rewrite system. Thus, merge becomes a 
defined operator on closed terms (but not on infinite processes, defined by means of 
recursive equations). 

5. COMMUNICATION. 
Parallel composition between processes is not interesting without some form of 
communication. For this reason, we extend the merge operator of section 4 to include the 
possibilities for communication. First, we need to say which atomic actions can 
communicate, which actions are communication partners. For this reason, we assume we 
have a communication function y given on the set of atomic actions A. This is a partial 
binary function on A; if 7(a,b) = C, we say that a and b communicate, and the result of the 
communication is C; if 7(a,b) is undefined, we say that a and b do not communicate. We 
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do not restrict ourselves beforehand to binary communication only, but will require that y is 
commutative and associative, i.e. for all a,b,c s A we have 

y(a,b) = 7(b,a) 

and either sfde of these equätions'is defined exactly when the other side is. Now, the 
parameters of our theory are A and y. _     , 

In order to incorporate the possibility for communication in the merge operator, we use 
an additional auxiliary operator I (communication merge). Now, x I y is just like x II y, but 
with the restriction that the first step is a communication step between x and y. In table 4, 
a,b e Au{5}, and x,y,z are arbitrary processes. 

alb=y(a,b) ify(a,b) is definedCFT 
alb = o otherwise CF2 
xlly=xlLy+ylLx + xly CM1 
alLx = ax ™* 
axlLy = a(xlly) £M3 
(x + y)lLz = xIz+ylLz CM4 
ax I b=(a I b)x CM5 
albx=(alb)x CM6 
axlby=(alb)(xlly) CM7 
(x+y) I z=x I z+y I z CM8 
xl(y+z)=xly+xlz CM9_ 
Table 4. Merge with communication. 

6. ENCAPSULATION. .      . .      ,. 
In communicating systems, we often want that communication partners should 
communicate, and not occur by themselves. In order to block unwanted occurrences of 
such actions, we need the encapsulation operators 3H- Here, H is a set of atomic 
actions (H c A), and 9H will block all actions from H, by renaming them mto 5. 

Ma) = * J^fTR DT 
3n(a) = a otherwise L>Z 
aH(x + y) = 3H(x) + 3H(y) D3 
9H(X-V) = aH(x)-aH(y) 21 
Table 5. Encapsulation. 

The axioms in table 1,2,4 and 5 together constitute the axiom system ACP (Algebra of 
Communicating Processes) of BERGSTRA & KLOP [BK84]. Typically, a system of 
communicating processes xi ,...,Xn is represented in ACP by the expression 3H(XI II... II xn), 
where H will contain all communication "halves' occurring in the parallel composition. 

This language (with some extra defined operators) has been used extensively in [1] in 
system specification. In order to do system verification, it is necessary to tackle the issue of 
abstraction as in [BK85]. 
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Abstract 

In any model of computation that distinguishes concurrency from nondeterminism, it is 
useful to be able to independently associate structure with each of these notions. To this end, 
we develop a categorical definition of process based on the pomset model parametrized on the 
choices of temporal structure and notion of nondeterminism. 

1    Introduction 

Partial order based models of concurrency [Gre75, Gra81, NPW81, MS80, Pra82, PW84] vary in 

their treatment of nondeterminism. Emulating formal language and trace theory, the labeled partial 

order (also called a partially ordered multiset — pomset) model of Grabowski [Gra81] and Pratt 

[Pra82] defines a process to be a set of behaviours, a behaviour being a set of events, a collection of 

timing constraints on the events, and a labeling associating each event with an action from another 

set (the alphabet). * In the original version, a behaviour is simply a pomset, that is, the timing 

constraints are given by a partial order. 

In this scheme, the notion of behaviour is strictly a deterministic one; all events of the behaviour 

must occur. Real nondeterminism (as opposed to the spurious nondeterminism introduced by the 

observation/interleaving of concurrent events — a distinction that makes sense from the "true 

concurrency" point of view) only appears at the upper level where a choice is made concerning 

which of the alternative behaviours of the process is to be executed.   This "disjunctive normal 

'Based partially on work supported by an NSF Graduate Fellowship 
'The Petri net literature refers to events as event occurrences and to actions as events. 
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form" representation for processes has the advantage of allowing us to treat the nondeterministic 

and concurrent aspects somewhat independently. 

In other work, we (with Casley, Meseguer and Pratt [CCMP89]) generalized the notion of behaviour 

to include other forms of temporal constraint besides that given by a partial order. Alternative tim- 

ing schemes included preorders, prosset orders (as defined in [GP87]), and premetric spaces [Law73], 

to name a few. Particularly important to us was the ability to provide rather clean categorical def- 

initions for many of the operations on behaviours described in [Gis84, Pra86] (e.g., concurrence, 

concatenation, orthocurrence, pomset-definables) which did not depend on the underlying temporal 

structure being that of a partial order. 

We now want to accomplish the same for full-fledged processes that include actual nondeterminism. 

How should the notion of process change as we change the timing schemes for events? As with 

the behaviours it is important that we provide suitably abstract definitions for the major process 

operations described in [Gis84, Pra86] if we expect to use them in specifications involving notions 

of temporal constraint more detailed than that of partial orders. 

As with timing schemes, other notions of nondeterminism can also be considered. For example, 

[BM84] consider notions providing each alternative behaviour with a path count (number of ways 

of producing this alternative) or a predicate governing the occurence of each alternative. These 

possibilities should also be included in our process model. 

In this paper we achieve both of these goals with our model, in effect composing the two categories 

representing the disjunctive and conjunctive structure respectively. We can also introduce structure 

between the alternatives as well; the set of alternatives becomes a category including partial stages 

in a computation as well as completed behaviours. 

The construction starts with an appropriate category of behaviours B (the conjunctive structure). 

If we consider behaviours to represent the actions taken by a system or a component of a system, 

a behaviour morphism is best viewed for our purposes as mapping the actions/events of subcom- 

ponents into those of larger components which contain them. Each event of the subcomponent 

appears somewhere in the larger component; the morphism tells us where. One useful consequence 

of this particular interpretation is that given a diagram of component behaviours, we can derive 

the full system behaviour by the simple expedient of taking a colimit. 

When considering the nondeterministic aspect, we notice that this relationship is reversed; each 

alternative available to the component implies a particular alternative in the su&component. This 

reversal is a consequence of the disjunctive nature of processes versus the conjunctive nature of 

behaviours. We then take a process P to be a set AP indexing the available alternatives, together 

with a function P : Ap -» B identifying the behaviours. 

Contrast this with other models that incorporate the nondeterministic and concurrent aspects into a single 
one-level structure (e.g, event-structures). 
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Ap can also be thought of as a discrete category with P a functor. 

A process morphism / : P -*■ Q then consists of a functor Af : AQ -* Ap (note the reversal) and a 

natural transformation £/ : PAf -> Q. (there are variants of this construction taking into account 

the alphabets of the behaviours of B which will discussed). 

The disjunctive structure is handled similarly, wherein we have a suitable category £ of e.g., predi- 

cates or multiplicities. Our notion of process will then also include a (contra)functor P': Ap -*■ £, 

while process morphisms now include a natural transformation (f : Q' -* P'Af. We leave open 

both the choice of behaviour notion B and the choice of nondeterminism notion £. 

As with the behaviours we get, assuming B and £ are sufficiently well behaved, generalizations of 

the various process operations defined for many pomset processes described in [Pra86] and [Gis84] 

by taking them to be appropriate limits or colimits (e.g., union is a product, concurrence is a 

coproduct). Fixpoint constructions [AK79, PS78] can also work. We again, as with behaviours, 

obtain a straightforward notion of system composition from taking colimits, albeit a somewhat 

different one from those previously proposed (i.e., Y-section [Gra81], utilization [Pra86] and fusion 

[GP87]). 
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Equality-Test and If-Then-Else Algebras: 
Axiomatization and Specification 

DON PIGOZZI 

IOWA STATE UNIVERSITY 

Many of the data structures that arise in practice include a Boolean sort together with equal- 
ity tests for the elements of each non-Boolean sort; in some cases they also include if-then-else 
operations that select elements of a data domain on the basis of a Boolean test. We find a finite 
set of conditional equations and a finite set of ordinary equations that axiomatize respectively 
the classes of equality-test and if-then-else algebras of each appropriate signature. We show that 
for equality-test algebras conditional specification is as powerful as universal specification, and 
equational specification is as powerful as universal specification in the presence of the if-then-else 
operations. We also investigate the power of conditional and equational specifications when the 
equality tests and if-then-else operations are hidden. 

Equality-test Algebras 
A signature S is an equality-test signature it it has a sort bool with operation symbols and, or, not, 
true, false, and, for each sort s £ bool, an operation symbol eqa : s s -* bool. A S-algebra A is an 
equality-test algebra if 5 contains a sort bool such that A j00/ is the two-element Boolean algebra, 
and, for each s 6 S \ {bool}, SSS40(,/ contains a operation symbol eqs such that 

A.     .     / true,    if a = b; 
e9,K*)= [false,   if a ? b. 

The class of all equality-test S-algebras is denoted by ETs; the subscript s is omitted when there 
is no chance of confusion. 

A S-algebra A is a generalized equality-test algebra if S is an equality-test signature and A 
satisfies the following set of equations and conditional equations (<p < ty stands for the Boolean 
equation not ipor^fa true). 

(Axget!)   A standard system of equational axioms for Boolean algebras; 

for each s € 5 \ {bool}: 
(Axget2)    eqa(x,x)fätrue-, 
(Axget3)    eq3{x,y) < eq3(y,x)] 
(Axget4)    eq3(x,y)andeqs(y,z) < eq3(x,z); 
(Axget5)    eqS0(x0,y0)and...andeq3n_1(xn-i,yn-i) < eq3{a{x0,...,xn-i),a(x0,...,xn^)), 

for each a 6 SW|J with w = «o^i... sn~im, 

(Axgetg)    eq3(x,y) » true -n«j. 

This set of axioms is denoted by AXGETs, and the quasivariety of all generalized equality-test 
S-algebras, i.e., the class of models of AXGETs, is denoted by GETs. 

The following theorem is the analogue for generalized equality test algebras of the Stone rep- 
resentation theorem (in algebraic form) for Boolean algebras. 
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GET-Representation Theorem. Every generalized equality-test algebra is isomorphic to a 
subalgebra of a Cartesian product of equality-test algebras. More generally, given any set E of 
equations, every generalized equality-test algebra that satisfies E is isomorphic to a subalgebra of 
a Cartesian product of equality-test algebras that satisfy E. 

Corollary. GET is the smallest quasivariety that contains all equality-test algebras. Hence 

AXGET is a base for the conditional equations of ET. 

Corollary. let K be a subquasivariety of GET defined relative to GET by any set E of iden- 
tities. Then the initial algebra of K can be represented as the minimal subalgebra of the Cartesian 
product of all equality-test data structures that satisfy E. 

It follows that an equality-test data structure can be an initial algebra of K iff it is the only 
equality-test data structure (up to isomorphism) satisfying E. In this case it is clearly also the final 

algebra of K. 

Specification of Equality-Test Algebras 
A data structure A is a heterogeneous algebra that is minimal in the sense that it has no proper 
subalgebras. If there is at least one ground term of each sort, then a data structure may be 
characterized as a heterogeneous algebra in which each element is denoted by a ground term. (A 

ground term is any term without variables.) 
Let S be any signature, A a E-data structure, and T a set of first-order E-sentences. T is an 

initial specification of A if A is the initial object in the category whose objects are the minimal 
subalgebras of models of T and whose morphisms are homomorphisms. (If T is a set of universal 
sentences, then it is an initial specification in the above sense iff A is initial in the category of 
models of T.) T is a final specification of A if A is the final (i.e., terminal) object in the category 
of non-trivial minimal subalgebras of models of T. (This particular notion of final specification 
is due to Bergstra and Tucker [SIAM J. Comput., 12(1983)]). A specification T is complete if it 
is at the same time initial and final. A specification is universal, conditional, or equational if V 
is respectively a set of universal first-order sentences, conditional equations (quasi-equations), or 

equations. 
Let E be and equality-test signature. For each quantifier-free S-formula <p we define a 6oo/-term 

<p* with the same variables as tp, by recursion on the structure of <p. If tp is an s-equation t w r, 

then 9* = eqs(t,r). (tp A VO* = (<P*) and (**)» (V v ^)* = (*>*) or W)> *"* W = "<*&')' 
The definition is extended to universal sentences: If tp is a universal sentence, and 

Vx0Va:i. •. Vxn_i¥?'(xo, • • •, a?n-i) 

is its prenex normal form with tp' quantifier-free, then tp* = tp1*. 
tp" is called the Boolean transform off. For any set T of universal sentences let E(T) = {tp* : 

Theorem 1. LetT be an arbitrary set of universal sentences. The relative subvariety of GET 
defined by E(T) U AXGET is the smallest quasivariety containing all equality-test algebras that 
satisfy T. Hence E(T)li AXGET is a base for the conditional equations of the equality-test algebras 

that satisfy T. 

This theorem provides the means for converting any universal initial or final specification of an 
equality-test algebra into a conditional complete specification. 
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Corollary. Let T be any set of universal sentences, and let A be an equality-test data struc- 
ture. If T is either an initial or final specification of A, then E{T) U AXGET is a conditional 
complete specification of A. 

Corollary. Every equality-test data structure that has a finite universal initial specification 
is computable. 

Conditional Specifications with Hidden Sorts and Operations 
We extend the results of the last section to data structures that are not equality-test algebras. A 
signature E' is an enrichment of S if the sort set 5' of E' includes the sort set S of E and SWJ C S^, 
for all ws € S* X S. A E'-algebra A' is an enrichment of a E-algebra A if A is obtained from 
A' by disregarding the additional sorts and operations. In this case A is called a reduct of A' and 
is denoted by A'|s- A set of E'-sentences is an initial (final, complete) specification of a E-data 
structure A with hidden sorts and operations if it is an initial (final, complete) specification of some 
E'-enrichment of A. 

Let E be an arbitrary signature. The equality-test signature E+ is obtained by enriching E 
with a new Boolean sort newbool and a new binary operation eqs for each sort s of E. newbool is 
called the hidden sort and the eqa the hidden operations of E+. For an arbitrary E-algebra A the 
equality-test enrichment A+ of A is defined in the obvious way. 

We have the following extension of Theorem 1. 

Theorem 2. Let E be any signature and T any set of universal E-sentences. Let K be the 
relative subvariety of GETS+ defined by E(T) U AXGETS+. Then K|s is the smallest quasivariety 
containing all E-aigebras that satisfy T. Hence E(T) U AXGETS+ is a base for the conditional 
equations of the models of T. 

Corollary. Let E be any signature, T any set of universal E-sentences, and A a E-data 
structure. If T is an initial specification of A, then E{T)U AXGETE+ is a conditional specification 
of A with hidden sort and operations. 

In contrast to the case for equality-test data structures, this conditional specification is not 
in general complete. In fact, if T is a universal specification of a data structure A of arbitrary 
signature E and T has no nontrivial models, then E(T) U AXGET2+ is a conditional complete 
specification of A with hidden sort and operations iff T is a universal complete specification of A. 

If-Then-Else Algebras 
A signature E is called an if-then-else signature if it is an equality-test signature and, in addition, 
there exists an operation symbol [-,-,-], : boolss -+ s for each sort s ^ bool. A E-algebra A is 
an if-then-else algebra if E is an if-then-else signature, A is an equality-test algebra, and, for each 
s e S \ {bool} and all 6 € A400/ and a0,ai € A„ 

tu iA _ / «o,   if * = tTue> 
[b,ao,ax\3  -\au   otherwise (i.e., 6 = false). 

The class of all if-then-else algebras is denoted by ITEs- 
Let E be an if-then-else signature, and let AXGITEs be the set of equations obtained from 

the axioms AXGETs by replacing the one conditional axiom, eq3(x,y) « true -»• x « y, by two 
equational axioms: 

[true, x,y]3& x,    [eq3(x, y), i, y], ta y. 
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Any E-algebra satisfying AXGITEE is called a generalized if-then-else algebra. The variety of 

generalized if-then-else algebras is denoted by GITEs- 

GITE-Representation Theorem. Every generalized if-then-else algebra, is isomorphic to a 
subalgebra of a Cartesian product of if-then-else algebras. More generally, given any set E of 
equations, every generalized if-then-else algebra that satisfies E is isomorphic to a subalgebra of a 
Cartesian product of if-then-else algebras that satisfy E. 

Corollary. GITE is the smallest quasivariety and also the smallest variety that contains all 
if-then-else algebras. Hence AXGITE is a base for the conditional equations of ITE. 

We also have the following analogues of Theorem 1 and its first corollary; compare Bloom and 
Tindell [SIAM J. Comput., 12(1983)], Guessarian and Meseguer [SIAM J. Comput., 16(1987)], and 

Mekler and Nelson [SIAM J. Comput., 16(1987)]. 

Theorem 3. Let T be an arbitrary set of universal sentences. The subvariety of GITE defined 
by E(T) U AXGITE is the smallest quasivariety and also the smallest variety containing all if-then- 
else algebras that satisfy T. Hence E(T) U AXGITE is a base for the conditional equations of the 

if-then-else algebras that satisfy T. 

Corollary. Let T be any set of universal sentences, and let A be an if-then-else data structure. 
If T is either an initial or final specification of A, then E(T) U AXGITE is a conditional complete 

specification of A. 

The if-then-else enrichments E+ of an arbitrary signature S and A+ of an arbitrary S-algebra 

A are defined in the obvious way. 
Theorem 2 and its corollary do not carry over intact to if-then-else algebras. Their proofs 

depend on the fact that none of the hidden operations of the equality-test enrichment has a visible 
sort as target. The best that can be obtained are the following. 

Theorem 4. Let S be any signature and T any set of universal E-sentences. let K be the 
subvariety of GITEE+ defined by E(T) U AXGITEE+. Then the class of subalgebras of K|s is the 
smallest quasivariety that contains all E-algebras that satisfy T. Hence E(T) U AXGITEj is an 
equationai base for the conditional equations of the models of T. 

Corollary. let T be any signature, T any set of universal E-sentences, and A a E-data 
structure. If T is an initial specification of A, then A is isomorphic to the minimal subalgebra of 
B|E where B if the initial algebra of the subvariety of GITE defined by E(T) U AXGETS+. 

Thus a finite universal initial specification of an arbitrary data structure A can always be 
transformed into a finite equationai initial specification of a generalized if-then-else-algebra B with 
the property that A is a subalgebra of the reduct of B. A need not be the entire reduct of B however, 
so in general we do not get an equationai specification of A with hidden sort and operations in the 

usual sense. 
However we do have that, if T is a universal specification of a data structure A and T has 

no non-trivial models, then E(T) U AXGITES+ is a equationai complete specification of A with 
hidden sort and operations iff T is a universal complete specification of A. Compare Bergstra and 
Tucker [Technical Report IW 156, Math. Cent., Amsterdam, 1980]. 
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For us, a petri net is a Place/Transition Net. The syntax can be a bipartite di- 

graph with constraints and firing rules as in [R82] or categorically motivated monoids as 

in [MM88a,MM88b]. The operational semantics of petri nets is, roughly speaking, given 

by finite sequences of markings determined by the graph structure, the constraints and the 

firing rules. Other related models include [Stk87,Win84,Win87]. Here we say dynamics for 

the operational semantics of petri nets. 

The dynamics progresses by a convolution, [Ros88,MB84], which is a commutative 

monoid on a well supported compact closed structure [Car88]. The algebraic structure 

of petri nets follows from the general structure theorems in [CW87,Car88] or indeed earlier 

papers. 

Since more than one transition can be enabled in a given marking, there may be several 

different follower markings from a given marking. Therefore the dynamics is in general 

nondeterministic. 

In this dynamics there is a natural notion of discrete time. Each time step, or tick, 

corresponds to an attempt to cause all the transitions to fire. But, in this dynamics, even 

enabled transitions may choose not to fire. So one of the nondeterministic choices is that 
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no transitions fire on a given tick. Therefore a follower marking may be identical to the 

predecessor marking. But this identity does not mean no transition has fired, since there 

are petri nets in which the result of certain firings result in the same marking as before the 

firing. This is not a defect in the choice of dynamics as the operational syntax. We agree 

that the intention of a petri net is solely to move indistinguishable tokens from place to place 

in the petri net. If the act of firing is of particular interest, one may add a distinguished 

output place to each transition. Each transition adds a token to this distinguished place. 

In this modified petri net, the number of tokens in each of the additional places records the 

number of times the transition has fired. 

The transitions of the petri net specify nondeterministic functions, roughly from input 

places to output places, by a delicate transformation from the firing rules to the genera- 

tors of the nondeterministic functions. The places of the petri net specify nondeterministic 

distribution functions from the places to the inputs to the transitions. These distribution 

functions forward tokens to the transitions in all possible ways. The distribution functions 

are denoted by A. Additionally, the places of the petri net specify nondeterministic collec- 

tion of functions from the outputs of the transitions to the places. The collection functions 

simply stack all incoming tokens at the place. These functions are denoted by V. 

Finally, we include an image transition for each place. The image transitions simply 

copy input to output. This describes the intuition that at any time tick, some or all of the 

tokens at a place remain at that place. We send such tokens through the image transition 

associated with the place. For example, a petri net with one place, one transition and set of 

nondeterministic markings M has a distribution function 

A: M —► M®M 
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which sends the tokens at the place either to the left or the right in all possible ways. The 

tensor is symmetric monoidal, as in [Mac71,Ben82,Ben87,Ben89]. For n tokens, the result 

of the distribution is the nondeterministic sum of pairs 

nA =   ]P   k ® p. 

The collection function from transition outputs to the place has signature 

V :M®M —► M. 

With k tokens on the left and p tokens on the right, the result of this collection is 

k ® pV = k + p 

with '+' being the ordinary sum of natural numbers. 

The transition of the one place, one transition petri net is associated with the firing 

function / : M —► M. There is an image firing function for the place, p : M —► M. The 

dynamics, d, of one time tick is the convolution 

<f = A(/<g>p)V:M—>M. 

These same considerations apply to a petri net with any (usually finite) number of places 

and transitions. The wiring diagram between places and transitions require some technical 

care, but causes no conceptual difficulties. Similarly, the structure easily extends to colored 

tokens and other such variations on the theme. 

A category of petri net dynamics has as objects the petri nets and as morphisms non- 

deterministic functions which preserve the behaviors. Consider the tensor product of two 

petri nets, this being determined by the tensor product of behavioral convolutions. The 

full subcategory of petri nets without sources has finite categorical products, these being 



the tensor product. The full subcategory of petri nets without sinks has finite categorical 

coproducts, these being the tensor product. Thus the full subcategory of petri nets without 

sources or sinks has finite biproducts. This is then the situation of [CW87]. 

Since the convolutional dynamics d is an endomorphsim, standard methods apply to 

understanding the iterate over time ticks. 
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Display of graphics  and their applications,  as exemplified by 

2-categories and the Hegelian  "taco" 

1) 
F.  William Lawvere 

A graphic monoid    M    satisfies identically xyx ■ xy and an 
application of    M    is a right • M-set.    Every left ideal of such 
an    M    is also a right ideal, simplifying and structuring the 
study of the topos of applications.-  An informal process of 

■displaying pictures of graphics and applications is exemplified, 
with conjectured use in the organization of knowledge. The Hege- 
lian organization of knowledge is concretely realized in terms 
of adjoint functors on "any" mathematical category, and is used 
to give a precise definition of the dimension needed for a dis- 
play.    A central fragment of the Hegelian scheme is revealed as 
an 8-element graphic, whose suggestive display has reminded some 
of a taco. 

I.   INTRODUCTION 

By a graphic we will mean any finite category each of whose 

endomorphism monoids satisfies the identity xyx = xy   ; in parti- 

cular,   a graphic monoid is a graphic category with one object. 

By an application of a graphic category we will mean any right 

action of it on finite sets   (i.e.  any contravariant finite-set- 

valued functor on it).     If    I    is any object of a graphic    G     , 

then GC-,1)   is  a particular application   (often called the right 

regular representation in the case of a monoid)   and together 

these give a full embedding of    G    into the topos of all appli- 
cations  of    G     ,   to which we  freely apply the Cayley-Dedekind- 

Grothendieck-Yoneda lemma.     If    X    is  any application of the 
graphic    G     ,  then the  "comma"  category G/X  (whose objects  are 

the elements of    X    and whose morphisms determine the action via 
the discrete fibration property of the labelling functor 
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G/x  > G ) is again a graphic.  Thus each particular appli- 

cation X of  G provides one way G'  » G of expanding the 

graphic G into a more detailed graphic G'  . Even though 

graphic monoids G play a central role, we must also deal with 

graphics such as G/X with many objects.  Similarly, the 

category G of all retracts of objects of G  (which may be 

constructed either abstractly to have as objects the idempotents 

of G or concretely as a full subcategory of the category of 

applications of G  ; note that in the former guise it is 

"a itself" which plays the role of 1&) will again have many 

objects - indeed the graphic identity xyx = xy implies x = x so 

that if G is a monoid then G has an object for every element 

of G (some of those objects may be isomorphic in G ). The 

interest of G '*—>    G is that it induces an equivalence between 

the associated toposes of applications. We intend to associate 

with each graphic Cby a compelling though not yet well-defined 

process),  a "display" which will reveal much of its structure. 

We do associate a well-defined distributive lattice which is it- 

self a standard application and which may be considered to con- 

sist of refined "dimensions" in that it parameterizes all the 

ranks in a Hegelian analysis of the topos of all applications; 

through this distributive lattice there is a well-defined ascen- 

ding sequence, obtained by the Hegelian process of "resolution of 

one unity of opposites by the next"; the length of this sequence 

is the geometrical dimension of the display in our numerous 

examples. 

What is especially striking is that the Hegelian analysis of 

any topos turns out to involve graphic monoids which are in fact 

bicategories.  Thus, the organization of any branch of knowledge, 

insofar as it can be mathematical (i.e. teachable), may in some 

measure reflect itself in graphic displays.  Though proposed [o] 

nearly 200 years ago, the Hegelian method of analysis has been 
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widely under-utilized since then; "conflicting" ideological claims 

either that it is inconsistent or that it is too wonderfully fluid 

to be made mathematical have conspired to prevent its being widely : 

taught. We believe that we have through modest examples shown it 

to be consistent (.and non-trivial) and that much of the method 

should be made mathematical, which would help those who seriously 

want to use it, even that part which remains fluid. 

By a constant  c  in a graphic monoid is meant an element 

such that ex = c for all x . The three element monoid with two 

constants 2>>ä? (so 3. 3. = t).)  has as its applications all the 

reflexive directed graphs; that example plays a central role in 

[l,2] and suggested the name. Toposes of applications of such 

"constant" graphics with more than two constants were investigated 

in £2] , partly as a vehicle for explaining some basic topos 

theory and partly to determine how they were different from the 

two-constant cases in which xiä ,x3,  denote the beginning and 

ending points of an arbitrary directed edge x.  In the course of 

that work, the identity xyx = xy was discovered as the least common 

generalization of constant (x = c) and identity (x = 1) ; later I 

learned that it had been briefly mentioned as a purely formal 

generalization in [3J , where the finiteness was noted, and that 

in £4] a partial structure theorem for such monoids was proved as 

well as a structure theorem for certain more general' monoids using 

these as one of the ingredients.  (Äs for finiteness, it is imme- 

diate that the free graphic monoid on a finite set of letters 

consists of all words without repetitions, of which there are only 

nl >**  i,) .  So far I have not found anv previous discussion of 
1=0 x" 

applications (in either sense) . 

In this paragraph (and the next), we make some imprecise 

remarks about possible uses.  Retrieving stored knowledge presuppo- 

ses some consciousness of the structure it has; this structure 

is in its particularity fixed by the storage process itself (and 
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in its generality is partly a reflection of the content, i.e. 

of the nature of the knowledge stored). Thus in both retrieval 

and storage one needs to be explicitly aware of the kind of 

structure involved.  Here we are momentarily accenting the 

"passive" aspect of the structure, the kind of structure that 

both codomain and domain of more "active" operations such as re- 

write must have (."peeking" may be definable) . Now it is commonly 

recognized that commutative operations such as Boolean inter- 

section are involved, but also "something further". We here 

speculate that non-commuting systems of idempotent operations 

may capture some of the further subtlety.  The arrangement of 

shelves in any science library shows that topological algebra ? 

algebraic topology and chemical physics f  physical chemistry, 

although these are in some sense "intersections". A feature which 

seems to be present is that a sub-branch b is~ not only a subset 

but reflects things x  (.not necessarily in b) to a part bx of 

b which is most relevant to x  (.bx is a single element in the 

generic case of G(-,I)  but the idea retains force in general 

applications). 

As another example, we could assign to every page of every 

book the title page of the book that it is in? clearly this 

operation specifies the set-of all title pages, but much more. 

Such idempotent operations need not commute but on the other hand 

would have a rather strong commutation relation reflecting the 

hierarchical structure of empty documents within folders within 

disks  We have pursued the investigations summarized here in 

the hope that the "graphical" identity may capture many instances 

of this commutation relation.  This hope was strengthened by the 

recent discovery that that identity arises in the Hegelian scheme 

of knowledge.  It is said that the German philosopher Hegel, 

building on the work of Aristotle and in opposition to the eclectic 

listing of categories of sciences by his "metaphysical" predecessor 

Wolfe, proposed to generate the main categories by a single dia- 

lectical process.  The great mathematician Grassmann, partly 

inspired by Leiniz, also emphasized the dialectical method in 
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building up his geometrical theory of extensive quantities. What 

striking contrast between these, who advanced both knowledge and 

its organization, and those to whom x£x is a big issue and 

who lead us astray with library-catalogue paradoxes, when more 

conscious access to libraries is what is neededl 2^ 

II.  Elementary Consequences of the Basic Identity, with special 
reference to ideals 

We begin our calculations by pointing out some remarkable 

consequences of the graphic identity 

aba = ab. 

For any right action X of any monoid M , there is for any 

element x the stabilizer 

Stab(x) = fa£M |xa = x] 

PROPOSITION 1   If M is a graphic monoid, then the stabilizer 

of any element x of any application X is a saturated submonoid: 

ab £stab(x)=^a,b £Stab(.x) . 

Proof: xab = x ==5 xa = xaba = xab = x and xb = xabb = xab = x. 

For any action the part fixed by all M is a (.trivial) 

subaction, but the part fixed by a single a£M, which for idempotent 

a satisfies 

Xa = £x £ X | xa = a J  , 

is usually only a subset (it is a functor of X 1 . 

PROPOSITION 2  If jyr is graphic and a£ M and if X is any 

application of M , then Xa is actually a sub-application, i.e. 

x£Xa=j>xb£Xa for all b£M. 

Proof:  xa = xz£>(xb)a = xaba = xab = xb z^y xb £ Xa 
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is that 
One of the most powerful consequences of the graphic identity 

every left ideal is a right ideal 

which follows from the next proposition, using the fact that every 

ideal of either kind is a union of principal ideals. 

PROPOSITION 3  For any element of any graphic monoid M 

aM £ Ma 

Proof: For every x there is an element xa for which 

a 
ax = x a, 

namely, we can take xa = ax. 

Since every element of a graphic monoid is idempotent, it 
follows trivially that 

every left ideal s is idempotent 

in the sense that SS = s . For a general monoid, this would be 

equivalent to »for every a,  there are u,v for which a = uava». 

This would include all groups, and also the monoid of all endomaps 

of a 2-element set, which figures in [2] .  Perhaps much of what" 

follows could be generalized to all monoids satisfying the two 

boxed axioms above, but if we assume idempotence of elements, it 

can be shown that  aM C Ma implies the graphic identity. 

Often Ma is much bigger than aM , but as a right ideal it 

is a finite union Ub.M of principal right ideals.  The smallest 

number #(a) of b.  required could be considered as a crude 
measure of the size of a 
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PROPOSITION 4  Ma = U b^M iff 

1) b. = b.a for all i 

2) for all x,xa = b.x for some i , 

In particular, one of the b.  must be a itself. 

Proof: xa = b.y for some y so xa = b.xa by idempotence.  Thus 

xa = b.axa by 1) so xa = b±ax « b±x.  Taking x = 1 proves the 

last remark. 

Normally a principal ideal can"have more than one generator, 

but in a graphic the elements are faithfully represented by right 

ideals: 

PROPOSITION' ' 5  In a graphic monoid,  aM = bM=^a = b . 

Proof: We have a=bx and b = ay , hence by idempotence a = ba 

and b = ab . But a = ba = bab = bb = b. 

For principal left ideals we do not have faithfulness but we 

do have, since Ma = Mb iff a = ab : 

PROPOSITION 6  In a graphic monoid, Ma = Mb iff a = ab and 

b = ba iff Stab (a) = Stab(b)  iff a,b are the images of c^/c^ 

under a homomorphism from the three, element monoid with. 2 constants. 

Note that aM/-\bM , while a right ideal, is not usually a 

principal right ideal and is often even empty. But for principal 

left ideal this situation is simpler: 

PROPOSITION 7       Mab = Ma f\ Mb 
Ml = M 

for any graphic monoid.  Hence Mab = Mba. 

Proof:  Mab ^ Mb is clear.  By the graphic identity, we also 

have Mab £ Ma .  If an element x is in both Ma and Mb  , 

then x = xa and x = xb by idempotence, so x = xb = xab£Mab. 

As Kimura [4] proved and used, the image CM of the homo- 

morphism M —> (left ideals, r\)   thus defined is actually the 
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universal homomorphism to any commutative graphic monoid 

(=semilattice) .  Schanuel (.unpublished) showed, as suggested by 

Propositions 1 and 6, that this semi-lattice reflection CM can 

alternatively be constructed as part of the set of all saturated 

submonoids under the join operation on such (.note that Ma - Mb 

iff Stab (.a) ^Stab(b) ). 

Now we recall that in the topos of all applications of M , 

the truth-value application JO. is the one consisting of all right 

ideals of M , under the action of each b £ M defined at A by 

A:b = jx£M |bx£A] 

which is easily seen to be another right ideal if A was. The 

universal use of -T2 is: if YCX is any sub-application, then 

X ¥  >il  defined by 

g?x = fa £M | xa £YJ 

is an M-equivariant morphism of applications, and the unique one 

for which. 

x £ Y <^==J> y* = true 

(where true = M£,£l ) holds for all x in X . In general ^?x 

is thought of as the truth-value of the statement  nx £Y" , which 

value just consists of all available acts which bring about actual 

truth.  For example, in the case where applications = directed 

graphs, there are five truth.-values, two of which are points, one 

is a loop at true, and the other two are edges connecting (.in the 

two directions) true with false = 0 . 

In the case of a graphic monoid we have shown (Proposition 3). 

that every left ideal is a right ideal. Even more remarkably, if 

we consider the sublattice -^i^f^ &■  (°f t*10 distributive 
lattice of all right ideals), which consists of the left ideals, we 

have 
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PROPOSITION- _8      For a graphic monoid    M, jfLc-Qis a sub-appli- 
cation . 

Proof:  If S is a left ideal and a£M , then S :a = £b | afa £ s]. 

We must show that this is again a left ideal.  So suppose ab £S 

and that c£M ; we must show cb£,S:a , that is that acb £ S 

But acb = (aca)b = acab ***  Mab £ s since s itself was a left 

ideal. 

Even though the inclusion of posets fl^c il has both a left 

adjoint  (A J—> MA)  and a right adjoint, neither of the latter 

is a morphism of applications.  For example, for directed graphs 

(where .«J ^true in the ordering, which we suppress) the inclusion 

in question is 

d 

which admits no graph-theoretic retraction (order-preserving or 

not) . Note that aM ^ bM =£>Ma £ Mb . 

Although applications in general do not have left actions, 

we can ask: For which inclusions YC X of applications does the 

corresponding characteristic map <P:X —> Q  actually factor 

through the sublattice il^C £L  of left ideals? In the example of 

directed graphs, the above picture shows the answer to be: those 

subgraphs Y of the graph X for which no directed edge of X 

enters Y or leaves Y except on excursion, i.e. 

xPo£Y£=> xS^tY for all x . 

Now in the generic application X = M  , the left multipli- 

cation by a may be considered as the reflection of an arbitrary 

x to (the "most relevant element of"?) the fixed point set Xa 

In a particular application X , left multiplication by a is 

usually not defined.  However, by proposition 2, XaCX is a 

B°l 



sub-application, and hence by the universal property of -fl there 

is a unique characteristic map <p :X —£• il i  and we have 

aM * ^x for all x  , for even Ma *= CP x.    We may ask, when is 

¥- (x)£ £1* 7  By definition 
a     Q 

PROPOSITION  9    ^(X)£Ü^ iff 

Vb,/\ £ M   (xba = xb z=px% ba = xÄ b] 

PROPOSITION 10  If X = M and if M consists only of constants 

and 1, then <f x £ H^ for all x, a£M. 

Throughout this paper we consider only the category of right 

actions or "applications'* (categories of left actions are treated 

very briefly in the examples in [2J  and have rather different 

properties)..  Thus it must constantly be kept in mind that whenever 

we attribute a property such as "connectedness" to a left ideal S , 

we are using our proposition 3 to consider S as an object in the 

category of Cright), applications-connectedness of S • as a left 

action would mean something quite different!  Similarly, when the 

set -Tig of left ideals is considered as an object in a category, 

it will be (.either as a lattice or) according to proposition 8 

as an application. 

III.  Elementary Examples and their Intuitive Displays 

In preparation for listing some examples of graphics, let us 

make explicit some facts about the role of constants, 

PROPOSITION 11   Every graphic monoid contains constants. 

Proof:  Since we have assumed finiteness, let c be the product, 

in some chosen order, of all the elements of the monoid.  Then 

ex = c for any x  , since x already occurs first as a factor 

of c  , and the basic identity cancels second occurrences. 
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For example, the free graphic monoid on n generators has nl 

constants, since all words of maximal length are distinct. Orf the 

other hand, all those can be collapsed to one without imposing any 

further relations between words of shorter length. Thus (not only 

commutative) examples may have a unique constant. 

PROPOSITION 12  If c is a constant, then so is ac for any a. 

Thus Ma includes all constants, hence any non-empty left ideal 

contains all constants.  Also if there is a unique constant o  , 

we have  ao = o for all a 

The left action of M on the set T  of all constants of o 
M may thus fail to be faithful. However, we can always adjoin 

new constants, for example via the sub-representation Mux of 

the faithful" left regular representation of M on X = M .  If 

we do that to the four-element free semilattice on two generators 

x,y , we get a six-element graphic whose display will turn out 

to be the two-dimensional picture 

Of course any free graphic monoid does act faithfully Con the 

left) on its constants. For example the five-element free graphic 

monoid on two generators a,b has the two constants ab and ba, 

on which the generators act by interchanging them; however, its 

display will turn out to be the one-dimensional: 

1 
a b 

ab ba 



The graphic monoid ^ with only three elements, two of 

which are constant, is displayed ... - 

and all its applications are "one-dimensional", being directed 

graohs.  It is of wide use in analyzing more complicated graphics, 

for example, consider the graphic monoid M which is freely 

generated by two elementsd   ,3^ subject to the one relation 

2,o(= 3,  and define dQ  -^  •  Then 

loh  = **A  = So 
3.3 «It* d_ = 3.o<-3 
loll   1   1 

so that any M-application has in particular an underlying directed 

graph, but is more in that o<  also acts on the directed edges.  In 

addition to the defining relation, we have äQc< »o^«* =<*^ = 3Q 
so that both 3-  remain constants even in M . The definition of 

3  says that any x<* ends at the beginning of x  , but moreover 
o    - 

^    = CA2-,  =3  so that xc<   is a loop at x3Q  - 

edge x in an application carries with it a picture 

Thus every 

if    x    is interpreted as a process, we might consider    KC<  as the 
"preparation" necessary for-   x     .     In order to represent    M    faith- 
fully by endomaps,  consider one more constant * together with 
3 9,     and define an operation on this three-element set by 
o  l ._ The left-ideal lattice Ii£ has o<(3> )   =o((9,)   = 3 o X o 

four elements 

, oU*)  = *  • 

0CM3    = M^CMoC C M 
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but M<7< = Q is not "connected", which will mean that 

even as a graphic in its own right, M must be displayed as 

one-dimensional.  This contrasts with 

£\x  x i^  = yc 

Äl  r 

o '//////¥////, y. *ih - ^jxi 

a two-dimensional, nine element graphical monoid, which like 

the above M also receives a homomorphism A^ —» A^ * -^ r 

say the diagonal.  Along the latter, we also get an underlying 

graph, whose display is 

In general, if every homomorphism A^  —>M is assigned a color, 

then all the underlying graph structures of M could be simul- 

taneously displayed. 

For another important example, recall that graphs underlie 

the theory of categories, but that there are also 2-categories; 

underlying the latter are 2-graphs, the generic example of which 

is n 

*O<2^]^5M 

i"j -x 

This can be made into a five element (four generator), graphical 

monoid by defining & £. = &   ,  D.D. - D. ,  D± #j - Äj , ^j -& 
Every 2-category (for example the 2-category of all graphics, all 

functors between these, and all natural transformations between 

those) has an underlying application of this monoid, in which 
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the ^D. are the domain and codomain "functors" of any "natural 

transformation" S^S^'l and FD.  are the domain and codomain 

"categories" of any "functor" F .  The lattice £±£ turns out to 
be a "linearly-ordered set isomorphic to Aoc^O ^1 <2} where 0 

stands for the constant Sj.     but 1 stands for the left ideal 

>^-      ^> which is already connected as a right ideal, hence (by 

the general theory to be described presently) the graphic itself 

has a two-dimensional display. 

If to a nontrivial graphic monoid we adjoin a new identity 

element, so that the original monoid becomes a connected left 

ideal in the new monoid, we get again a graphic monoid of 

dimension at least two.  If we do this to ^.   , and denote the 

original identity element by w , we see 

a»- 

that w is more of a "core" than a "boundary", and moreover that, 

since this is a homomorphic image of 

- w 

a       wa       b 

dimension can be increased by homomorphic image.  Since w3. =3., 

in the underlying-graph display of M the cloud 1 condenses into 

another arrow parallel to w 

In order to describe a certain class of examples, two more 

propositions will be helpful. 

PROPOSITION 13  The lattice X2.£ of left (=bi) ideals in a graphic 

monoid M is linearly ordered iff for every pair a,b of elements 

in M 
a = ab or b = ba 

Proof:  This is the condition that Ma - Mb or Mb - Ma,  i.e. 

that the (semilattice) commutative reflection CM be linearly 

ordered. But the left ideals of CM are included surjectively 

into the left ideals of M  , and the left ideals of a linear semi- 

lattice are clearly linearly ordered. 
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PROPOSITION 14  (Schanuel)  Suppose that the endomorphism 

monoid of an object A in a category (such as M) satisfies the 

graphic identity, and that B is any other object.  Then there 

is at most one splittable epimorphism A -*-* B .  In case A,B 
are retracts of a common graphical object I with idempotents 

a,b then p exists iff Mb £ Ma , where M is the endomorphism 

monoid of I 
Proof: Suppose p has splitting section s  , but that also q 

has splitting section i  ; that is  ps = lß = qi .  Then of 
course sp and iq are idempotents at A , but since A is 

graphic also ip and sq are idempotents.  Better 

sq = s(pi)q = Csp) Ciq) Csp) = sCpiqs)p = sp 

so that q = p because s is a monomorphism. It is easily 
checked that at least one p exists iff b = ba , in the M case. 

Thus in any graphic the subcategory of all splittable epi- 

. morphisms forms a poset. If -,      '■      ■_ 

A = Bn -^ Bn_1 -» 3n_2 —» . . / -» B0 -fr B_„ 

is any linear family of splittable epimorphisms in- any category, 

and if we consider for each k any non-empty finite set of 

sections B, , <-—■—> B.  for pv / then the submonoid of endomor- 
phisms . of A obtained by considering all composites will be 

a graphical monoid.  Special interest will attach in part IV. 

to the case where we consider two sections for each p^. 

Note that the unique retraction I —^ aM "represents" on 

the level of elements all the unique inclusions X& C—? X in 

the topos of applications of M 

The (one-dimensional) graphic monoid with four constants 
and five elements (which was described as a "bare unity" in [2J) 
can be embedded in the two-dimensional ^ * #A ; the one dimen- 

sional connection might be displayed as 
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Another interesting embedding is 

PROPOSITION 15 The free graphic monoid P on two generators 

a,b can be embedded in J^ * 4-^ * ^^   . 

Proof: Note that M = ^. *  ^,  has a pair of elements f,s such 

that s 7* fs = sf 7* f .  For any such M  , F can be embedded 

in Mx^  by sending a =\f,3Q>, b = ^3,^) . 

IV.  unity and Identity of Opposites in Bicategories and precise 

Definition of the refined and coarse Dimensions of Displays 

In order to clarify the notion of dimension which arose in 

our intuitive displays of graphics, as well as to provide an 

infinite number of examples of graphics arising from non-idempotent 

mathematical structures, consider the following 

DEFINITION  A functor G.—=► 3  will be called a unity-and- 

identity-of-opposites (UIO). iff it has both left and right adjoints 

and one of the latter is full and faithful (.hence both are). Then, 

denoting by L and R the two idempotent endofunctors of CL 

obtained by composition, we have also LHR and LR = L, RL = R. 

The two adjoints are the inclusions of two opposite sub- 

categories united in CL , yet identical with Q   . The terminal 

functor CL—*  1 is a UIO iff CL has both initial and terminal 
objects;  the latter may be called non-being and pure being resp., 

and in general L .is "non" whatever attribute (of CL\     R is the 

"pure" form of.  If CL  is a topos then fh  will automatically be 

a tooos as well; this applies to our fundamental class of examples, 
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where CL is the category of all.applications of a given graphic. 
In case ß is a topos,  R is called the /S-sheafification, and 

"non" sheaves may be called ^-skeletal. The set of all UIO's 

with a given Ci forms a poset with respect to the "greater than" 
ordering Q, 

This poset is often small even when Q. is large and is often a 
complete lattice, as is shown in a forthcoming joint paper with 

Kelly [s2    . For example 

PROPOSITION 16 If d is a category of all right actions (on sets) 

of a small category C  , then the poset of UIO's with domain 

is equivalent to the poset of all idempotent two-sided ideals in 

the category C  , with the empty ideal corresponding to CL—5» %. 

Corollary: For the category CX. of all applications of a given 
graphic monoid M the poset of all UIO's is parameterized by 

the poset of all left ideals of M .  In more detail, if S is 

a left ideal of M , then an application X is an S'-sheaf iff 

every morphism S —> X in d  is of the form s f—£• x«s for a 
unique element x of X , and on the other hand the S-skeleton 

Le (X) C X of any application X is given by 

LSX ■ y *■ 
i.e. all those elements of X that are fixed by some s£S  . 
Moreover, (since idempotence is automatic and quite unlike the 

general case) (not only the suprema but also) the infima in this 

finite (distributive!) lattice are computed as ordinary (unions 

and) intersections. 

We will attribute refined dimension's to all applications 

X which satisfy the "negative determination" LgX -2=-» X . 
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In particular, 0 will also be called of dimension-GO and TQ  = 

the set of all constants of M determines the subtopos A3Q  of 

all "codiscrete" applications so that o-dimensional means 

"discrete": We will assume that M has at least two constants, 

which implies that Xi. is connected  ny1 = 1) and that the 

"components" functor CL—*-*■ BQ  (extra left adjoint to the 

discrete inclusion) preserves finite products £L,2J . To define 

coarse dimensions 1,2,... we will use the following 

DEFINITION:   If S ^ T are left ideals, say that T resolves 

the opposites of S  , in symbols 

S <<T 
a 

iff every S-skeletal application is a T-sheaf, i.e. iff R^g = Lg 
Because of the nice properties of intersection mentioned in the 

corollary to Proposition 16, there is for every S a smallest 

S'  which resolves the opposites of S ; we may call S»  the 

"Aufhebung" of S  .  Then the Aufhebung of pure being versus 

non-being is pure becoming versus non-becoming, i.e. codiscrete 

(chaotic) versus discrete, since if 0    is to be a T-sheaf, 

then there can be no maps T —> 0 , i.e. T must be non-empty, 

but by Proposition 12,  TQ C= the set of all constants of M ) 

is the smallest non-empty left ideal; thus  (-00)' ■ 0 as 

claimed.  Since, intuitively, one-dimensional figures are the 

dimensionally-smallest ones which permit connecting all those 

points that can be connected, still more satisfying is 

PROPOSITION 17  0' - 1.  That is, TT0LT = TTQ    iff "RT
L
0=V Thus 

T,  is characterized as the smallest left ideal of M which is 

connected as a (right) application of M 

Proof:  Composite adjoints are adjoint composites. Or, if discrete 

applications D are to be T-sheaves, then every T —9» D must 

come from an element of D  ; but elements of D are constant 

(non-becoming), hence every T-—> D must be constant (e.g. for 

D = 2), hence T must be connected. 
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Corollary; If MN£L] is not connected/ then M is one-dimensional, 

whereas if Msfl} is connected and is the "Aufhebung«* of some s 

which is in turn an Aufhebung..., then M is at least two- 

dimensional. 

Here the dimension of M itself is defined in terms of the 

length of the sequence T
n+i

= Tn; exPerience C6J w*th other examples 
suggests that this length is the dimension for small dimensions 

and a simple function of it for higher dimensions. 

PROPOSITION 18 If M is the free graphic monoid on k ^ 2 

generators, then dim M = 1. 

Proof: Since "first letter of a word" is well-defined, 
k 

MN{I] = ^ a.M 

is a disjoint sum in the category of applications, hence not 

connected. 

While principal right ideals are connected, principal left 

ideals need not be, for example, Ma in the free example on a,b : 

att C Ma C M 

J II II 

i la 

a <Z ab# C t 
t • 

a] 0" ba# r 
An even smaller example of an "infinitesimal dimension" is 

provided by 

M = 

where G is a left ideal. But note that a left ideal which 

contains a connected left ideal is itself connected, for any t 

can be moved to a constant by the right action of a constant. 

£,<? 



Now consider any category Cc with initial and terminal 

objects 0,1 and a double resolution of the latter by C r ß 

which successively climb Cl -ward d—P   S—^ C  —£• &   . Let 

r = pure C ,  C~  non C t    R - Pure ß, L = non Q. The first 

resolution means r0 = 0  (which implies Q.77CO if Uis a topos) 

while the second,  R£ = £ means that there are three (rather than 

four) subcategories of Q.  "identical" with C .    Assume for sim- 

plicity that also £l = 1  . Consider the category^ of all endo- 

functors of £L definable by composition from these and all natural 

transformations definable from the adjunction morphisms. 771  is a 

finite non-symmetric monoidal category, and there is only one ob- 

ject q = Lr in W.  which does not have either a left or a right 

adjoint in Tit-  it comes from the third embedding of ^ in d . 

PROPOSITION 19  The objects of TK  under composition constitute 

(up to equivalence) a graphic monoid of ( - ) eight elements which 

has five left ideals 
0ojofi]c[£,q,r] C[L,B]C(J  J 

(where we have shown only the elements new at each stage) . 

The middle of these (generated by any lower case letter) is already 

connected (by the right action of 0 11. 

Thus the display of TK.is apparently 

Hegelian "taco", a display 
of the 3-dimensional 
8-element graphic monoid Wl 

which reminded some of a taco: All the me-at of Q, is inside  1^ , 

while there are two identical faces L,R with a common edge <  and 
separate (but identical) edges q,r. 
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To finish, the proof that >•// ,is really three-dimensional, 

we need only shew that the Aufhebung of [^t°f^l    is just  [_L,RJ, 

i.e. does not somehow jump all the way to the top  [L~] of the 

dimension lattice as happens in other examples. But S =^,q.,rj 

is actually principal S = ?lti,  while for such principal ideals 

it is easily seen that L X = X-t    for all applications X of///? 

thus for X to be S-skeletal merely means that all elements of 

X are fixed by the right action of -c .  Suppose X is all 

fixed by ^ ; we must show that X is already an [L,RJ-sheaf-, 

so consider any morphism [L,R] *• X    of applications, which 

we must show comes from a unique complete element of X . The 

uniqueness is immediate, since if x,y are any two elements of 

X with, the same [L,RJ part f  , we have xt = yt for all 

t£ {~L,R1 , but t = yt is such and we have already assumed X 

fixed by Z '  thus x = x/= y/ = y .  For the existence of an x 

extending the partial element f  , note that, while a general 

application X consists of a complicated interlocking system 

of "tacos", the skeletal condition means that these are all de- 

generated with, x = x.Z=  xq = xr , i.e. all three "edges" of any 

element x coincide; this implies also xL = X/L = xX = x and 

similarly xR = x , leaving only the endpoint operators xO, x»l 

acting possibly non-trivially: to sum up, such a skeletal }iC~ 

application is in essence just a directed graph. Now a partial 

element f defined only on the faces [L,R] = Ml*    has in parti- 

cular all its values fixed by A.  due .to the skeletal condition, 

ftt).. = fiL).I = ftti) = ft£) 

f(R) = f(R)£  = £(Rl)   = fU) 

the last being true because of the Aufhebung condition R-c= -\. 

in the definition of 4%  itself.  Thus the element x = fCc) 

seems the likely candidate for a complete (degenerately) three- 

dimensional element whose restriction to the seven-element ideal 

[L,R] could be f itself.  Thus we try to show 

7/ 



f (l)a = f (a) 

for all  seven    a£[L,Rj   .     For    a = L,R    we have  by the  above 

f U)L =   f(L)L =   f(.L) 

f (i)R =  f (.R)R =  f (R) . 

(.both of course equal to f(£)   ).  For the two constants  a = 0,1 

we have f(/)a = f(ia) = f(a)  since /o = o,ü,l = 1 •  For the 

remaining three a = ^,q,r the case a = t    is tautologous, and 

for a = r,q we have 

f (/).r = f C&) = f U) 

f(£)q = f(£)Lr = fCfrr) = £(/) 

so that we are reduced to showing that 

f(r) = fU)   = f(.q). 

For this we need to use that    f    is  defined also on the two-di- 
mensional    L,R    since otherwise these could be three different 
edges   (with the same endpoints  f (.01 ,f CD   )   of the directed graph. 

But since    f (R).  = f (Z) , 

fix)  = fCRr)   = f(.R).r = f(i)r= f(./r)   = f(# 

and since f(.L)   = flZl, 
f(q) = f(.Lr)   = f(.L)r = f(/)r = f (/r)  = f,(£) 

so the proof is done. 

Of course the above display does not show that^iis a 

monoidal category, not just a graphic monoid;  if X £ Ct   is any 

"morsel", then the horizontal slice through the "taco" at X 

actually has canonical morphisms of Q (indexed by 1/U ) , which 

are roughly the "Moore-Postnikov" analysis of X in case 

£l=combinatorial topology, as follows: 
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Part of the category 
structure of lit revealed at the 

"morsel" X£,£{by the analysis 

£x '.—> LX —* x —> RX —» rX 
of X in terms of its 7b  and G  reflections 

measuring how closely the various reflections of X  (into the 

grasped stages Q ,  73)   succeed in approximating it. 

PROPOSITION - 20 The "slice" obtained fay omitting 0,1 from 4M. 

is as a graphic monoid isomorphic to a six-element submonoid of 

the monoid of all order-preserving endomaps of a three-element 

linearly-ordered set; namely omitting 001, 002, 112, 122 from 

the latter corresponds to the former via 0 I—>X. / 1 I—> 3/ 

2 I—^ r . (Note that y£,q.rr  have become constants through this 

omission). 

The proof is left to the interested reader. 
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NOTES 

1) This reseaxch was not supported by any granting agency. 

2) I am not a "Hegelian", since I reject Hegel's Objective 

Idealism. But Hegel's partly-achieved goal of developing 

Objective Logic (as a component of the laws of thought at 

least as important as the Subjective Logic commonly con- 

sidered to be "all" of Logic)  is in a way the program 

which the whole body of category theory has been carrying 

out within mathematics for the past 50 years.  It was 

because of some discoveries in the foundations of homotopy 

theory that I began a few years ago the study of 

The Science of Logic, attempting to extract the "rational 

kernel" which, insofar as it truly reflects laws of thought, 

should be useful to us in investigations like the one 

summarized in this paper. 
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Abstract 

One of the most obvious applications of algebraic methods to software technology are algebraic 
specifications. In this paper we investigate how far the development and the reuse of modular 
software can effectively be supported by algebraic specifications. We show that modularity cannot 
be modelled as easily as one may expect, and we introduce a new semantic framework, the stratified 
loose semantics, which can be considered as a generalization of both initial and loose semantics 
and which is used to define the formal semantics of the Pluss algebraic specification language. 

1    Introduction 

The problem considered in this paper concerns the algebraic specification of reusable, mod- 
ular software. Since the pioneer work of [11], algebraic specifications have been advocated 
as being one of the most promising approach to enhance software quality and reliability. 
Algebraic specifications proved to be useful not only to formally describe complex software 
systems, but also to prototype them (e.g. by transforming axioms into an equivalent set 
of rewriting rules), and to prove the correctness of these software systems (w.r.t. their 
formal, algebraic specification). More recently, it has also been shown that algebraic spec- 
ifications provide suitable means to compute adequate test sets for the described software 
systems, and that they provide also a formal basis to promote software reusability (to 
decide whether or not some software is reusable for some specific purposes being shown 
equivalent to the "comparison'' of the formal specification of the software to be reused 
with the formal specification of the software to be written). An important aim of the 
research activity in the area of algebraic specifications is to provide adequate concepts, 
languages and tools to cover the whole software development process and to establish their 

^his work is partially supported by ESPRIT Project 432 METEOR and C.N.R.S. GRECO de 
Programmation. 
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mathematical foundations. 

In this paper we shaU focus on the links that can (should) be established between 
a structured specification and the corresponding software implemented using a modular 
programming language such as Ada, Clu or ML. The problem considered is to define 
an algebraic semantic framework such that the various pieces of the specification can be 
related to the various modules of the implementation and such that the global correctness 
of the implementation can be established from the local correctness of each software module 
w.r.t. its specification module. 

2    Modularity and loose algebraic specifications 

To better understand why and how far both the modularity of the specification and the 
modularity of the software interact together as well as the need for a new approach to 
the semantics of algebraic specifications, we shall first briefly recall the main underlying 
paradigm of the loose approach. 

A specification is supposed to describe a future or existing system in such a way that 
the properties of the system (what the system does) are expressed, and the implementa- 
tion details (how it is done) are omitted. Thus a specification language aims at describing 
classes of correct (w.r.t. the intended purposes) implementations (realizations). In contrast 
a programming language aims at describing specific implementations (realizations). In a 
loose framework, the semantics of some specification S is a class M of (non-isomorphic) 
algebras. Given some implementation (program) P, its correctness w.r.t. the specification 
S can then be established by relating the program P with one of the algebras of the class 
M. Roughly speaking, the program P will be correct w.r.t. the specification S if and only 
if the algebra defined by P belongs to the class M.2 

Let us now reexamine the above picture in a modular setting. At one hand we have 
a modular specification S made of some specification modules Su S2).. .tied together by 
some specification-building primitives. On the other hand we have a modular program P 
made of some program modules Pi, P2>.... Assume moreover that the program structure 
reflects the specification structure. The problem we have to solve is the following one: 

2This is of course an oversimplified picture: indeed, the program P should be considered as a correct 
implementation of S if and only if the algebra defined by P is "behaviorally equivalent" to some algebra 
belonging to M (see e.g. [14]). However, in the sequel we shall adopt the oversimplified understanding of 
program correctness, since it will be sufficient to study the impact of modularity. Note also that our picture 
does not preclude more refined views about implementations, such as the abstract implementation of one 
specification by another (more concrete) one [3,7], or the stepwise refinement and transformation of a spe 
into a piece of software [2]. This indeed is the reason why whe shall speak of "realizations" instead of 
"implementations". 
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1. To define a notion of correctness such that "the program module P2 is correct 
w.r.t. the specification module S2" is given a precise meaning, and 

2. To ensure that the local correctness of each program module w.r.t. its specification 
module implies the global correctness of the whole program w.r.t. the whole specifi- 
cation, and 

3. To carefully study how some basic requirements about the modular development of 
modular software, as well as their reusability, interact with the design of the semantics 
of the (modular) specifications. 

It turns out that the main difficulties raised by this goal are twofold: 

1. Providing a (loose) semantics to specification modules is not so easy, since from 
a mathematical point of view (heterogeneous) algebras do not have a modular struc- 
ture. 

2. If our intuition and needs about modular software development and the reuse of 
modular software can be easily figured out, this is not the case at the level of algebraic 
semantics. 

In the following section we shall try to provide some insight into the solution we propose 
and into the main ideas underlying what we call the "stratified loose semantics™. 

3    The stratified loose semantics 

For sake of simplicity, we shall focus on the most commonly used specification-building 
primitive, namely the enrichment one. Moreover, we shall assume that the modular spec- 
ification we consider is made of one specification module S2 that enrich only one another 
specification module Si, which in turn may enrich other specification modules. 

The specification module Sx determines the specification Si, thejemantics of which 
is some class of models (or algebras). The signature associated to Si is denoted by Ei, 
while the distinguished subset3 of Ei correspondingjo the generators of the defined sorts 
is denoted by fii- The class of models associated to S[ is denoted by Mi. Similar notations 
hold for the S2 specification module. Note that we have Ex C E2, and fii C f22. U denotes 
the usual forgetful functor from E2-algebras to Ei-algebras; the image U{M2) of the class 
M2 by the forgetful functor U will also be denoted by M^, as well as the image by U of 
some model M2 of M2 is denoted by M2|yjx. 

3In Pluss, this distinguished subset is specified apart from the other operations and is introduced by the 
keyword generated by. 
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With the help of this simple example, our intuition and needs w.r.t. the modular 
development of modular software can be summarized as follows: 

1. If some piece of software fulfills (i.e. is a correct realization of) the "large" specifi- 
cation S^, then it must be reusable for simpler purposes (i.e. it must also provide a 
correct realization of the sub-specification Si) 

2. Any piece of software that fulfills (i.e. that is a correct realization of) the sub- 
specification Si should be reusable as the basis of some correct realization of the 
larger specification %. In other words, it should be possible to implement the sub- 
specification S[ without taking care of the (future or existing) enrichments of this 
specification (e.g. by the specification module S2). 

3. It should be possible to implement the specification module S2 without knowing 
which peculiar realization of the sub-specification S[ has been (or will be) chosen. 
Thus, the various specification modules should be implementable independently 
of each other, may be simultaneously by separate programmer teams. Moreover, 
exchanging some correct realization (say Pi) of the specification module Si with 
another correct one (say PJ) should still produce a correct realization of the whole 
specification S^, without modification of the realization P2 of the specification module 
S2. 

The first two requirements can be easily achieved by embedding some appropriate hier- 
archical constraints into the semantics of the enrichment specification-building primitive. 
Roughly speaking, it is sufficient to require the following property: 

Either M2 = 0 (in that case the specification module S2 will be said to be 
hierarchically inconsistent) or M^^ = Mi» 

The third requirement, however, cannot be achieved without providing a suitable (loose) 
semantics to specification modules. There is no way to take this requirement into ac- 
count by only looking at the semantics of specifications. The following definition provides 
the solution we are looking for by embedding the ideas of the initial approach to algebraic 
semantics into the loose one: 

Definition (Stratified loose semantics) : ^ 
Let Mi be the class of the models of the specification S[ (according to this current defi- 
nition), and M2 be the class of all the ^-algebras finitely generated w.r.t. Ü2, for which 
the axioms fix(S2) hold, and which produce Si models when the new part specified by the 
specification module S2 is forgotten by the forgetful functor U (i.e. we have U(M2) C Mi). 

• If'Mi is empty, the enrichment is said to be (hierarchically) inconsistent and the 
semantics of the specification module S2 is empty, as well as the semantics M2 of the 
whole specification S2. 
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• Otherwise, the semantics of the specification module S2 is defined as being the class 
7* of all the mappings £• such that: 

1. 7i is a (total) functor from Hi to M2. 

2. Ji is a right inverse of the forgetful functor U, i.e.: VMi € .Mi: U{7i{Mi)) = Mx. 

If the class 7? is empty, then the enrichment is also said to be (hierarchically) in- 
consistent. 

• The semantics of the whole specification S2 is defined as being the class of all the 
models image by the functors % of the models of Mi: M2 =   U   7i(Mi) 

The class M2 of the models of the specification S^ is said to be stratified by the functors 7{. 

Some comments axe necessary to better understand the previous definition: 

• In the definition above, the restriction to models finitely generated w.r.t. to the 
generators is made to guarantee that all values will be denotable as some composition 
of these generators. Thus, structural induction using these generators is a correct 
proof principle. 

• Our semantics is loose, since it associates a class of (non-isomorphic) functors (resp. al- 
gebras) to a given specification module (resp. to a given specification). However, our 
semantics can also be considered as a generalization of the initial approach: under 
suitable assumptions, the free functor from Ei-algebras to E2-algebras is just one 
specific functor in the class 7*. 

• It is also important to note that our definition is almost independent of the underlying 
institution [13]. 

As a last remark, we must point out how far our definition solves the problem stated in 
the previous section. A program module will be said to be correct w.r.t. some specification 
module if and only if it induces a functor belonging to the semantics of the specification 
module. From our definition, it is then clear that the "composition" of correct program 
modules (i.e. the program obtained by linking together these program modules) is always 
a correct realization of the whole specification. 

The extension of the definition above to the case where the specification module 52 

enriches more than one specification module as well as its extension to other specification- 
building primitives (such as e.g. parameterization) do not raise difficult problems and is 
described in [4]. 
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4     Conclusion 

The main significance of the stratified loose framework outlined in this paper is that it is 
possible to specify and develop software in a modular way, and that the correctness of the 
implementation should only be established on a module per module basis. A formal the- 
ory of software reusability, built on top of our stratified loose semantics, is described in [10]. 

As a consequence of the "hierarchical constraints" required by modularity, it is neces- 
sary to state a careful distinction between "implementable" and "not yet implementable" 
specification modules. This is done in the Pluss algebraic specification language [4,5], the 
semantics of which is defined following the stratified loose approach. Such a distinction 
contrasts with all other specification languages developed following either the initial or the 
loose approach, such as ACT ONE [6,8], ASL [15,1], OBJ2 [9] and LARCH [12], where 
there is only a distinction between various enrichment primitives. 
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Algebraic Concepts for the Evolution of Module Families * 

Hartmut Ehrig, Werner Fey, Horst Hansen, Michael Lowe J Dean Jacobs * 

April 5,1989 

1    Introduction 
The importance of decomposing large software systems into modules to improve their clarity, facilitate 
proofs of correctness, and support reusablity has been widely recognized within the software engineering 
community. Recently, considerable interest has developed in techniques for keeping track of structural 
and historical relationships between modules as a system evolves over time. In this paper, we study these 
issues within a formal semantic framework for modules based on algebraic specifications. Our goal is to 
clearly formulate fundamental ideas in this area to serve as a guide to the design of methodologies, and 
tools for software engineering. 

We first present an algebraic concept of modules and their interfaces which is suitable for all phases 
of the software development process; from requirements specification to high-level design specification 
to executable code. This concept has evolved over the last ten years, from early work on abstract data 
types [LZ74, GTW76, TWW78], into its present form [WE86, BEPP87]. We then present a set of fun- 
damental operations on interface and module specifications, including horizontal structuring operations 
for building up specifications, vertical development steps which refine abstract specifications into more 
concrete forms, and realization of interlace specifications by module specifications. A variety of different 
program development methodologies can be formulated within this framework. For example, a top-down 
approach might start with high-level requirements expressed as interface specifications. Then, vertical 
development steps could be taken to elaborate the design, perhaps introducing some horizontal structure. 
Eventually, the interface specifications would be realised by module specifications to produce a high-level 
description of the implementation. Finally, additional vertical development steps could be taken until 
an acceptable implementation is produced. 

The algebraic framework allows us to study semantic interactions between horizontal structuring, 
vertical development, and realization. For example, we study whether horizontal operations are compat- 
ible with vertical steps in the sense that a compound module is refined when its submodules are refined. 
These operations and results concerning their compatibilities are discussed in more detail in [EFH+87]. 

Our most recent work, discussed here and in more detail in our technical report [EFH+88], studies 
the construction and evolution of module families. A module family is a collection of conceptually 
related modules, usually revisions and variants, which have developed over time. Module families provide 
structure to a module library, facilitating the storage, access, and reuse of its members. In addition, 
module families allow the members of a group of conceptually related systems to be manipulated all 
at once rather than individually. In our framework, a module family is defined to be a set of module 
specifications, each of which realizes a common abstract interface. Each module family has a set of 
relations, such as refinementjof, revitionjof, and variantjof, defined on its members. We show how 
the horizontal operations on interface and module specifications can be applied to entire module families 
to produce configuration families and how refinements of the underlying modules induce refinements of 
configurations. 

'Thii research wai carried out a« part of an exchange program between TUB and USC. 
tTU Berlin, Imtitut für Software und Theoretische Informatik, FranklinitraMe 28/29, D-1000 Berlin 10 
»CS Dept, University of Southern California, Loi Angelet, CA 90089-0782, jacob.Opollux.uic.edu 
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S 
Figure 1: Module Specifications 

2    Preliminaries 
An algebraic datatype specification is a triple SPEC = (5, OP, E) where S, OP, and E are sets of sort 
symbols, operation symbols, and equations respectively. A specification morphism f:SPECx-*SPECi 
between specifications SPECt = (5,-, OPit Ei) for »= 1,2 is a pair of functions / = (fs: Si -* S2, fop: 
OPi — OP3) such that for each N: «i,..., i» -* t in OPi we have fop(N): fs('i), • • • • fs(»n) -» /s(*) 
in OP2, and for each e in JS?i the translated equation /*(«) is provable from E}. A SP JJO-algebra ,4 
consists of a base set A, for each $ € S and an operation NA : 4,,,..., A,„~* A, for each operation 
symbol N :*i,...,sn-* a in OP. The operations are required to satisfy all equations in E. SPEC- 
algebras and homomorphisms between them define a domain Alg(SPEC) used to define the semantics 
of modules. For each specification morphism / : SPECi -* SPEC} there is a forgetful construction 
FORGETj :Alg(SPEC3) — Alg(SPECi) which forgets all base sets and operations not in f(SPECi), 
and a free construction FREE} : Alg(SPECi)-* Alg(SPEC2) which transforms each SP£?Cx-algebra 
in Ai into a freely generated SP-ECj-algebra. For more details, see [EM85]. 

3    Module and Interface Specifications 
A module specification MOD = (PAR, IMP, EXP, BOD,»', e, J, v) contains four algebraic datatype spec- 
ifications. 

• The import part IMP identifies the sorts and operations which are to be brought into into the 
module. In general, the equations in the import part describe only essential or unusual properties 
of these operations; their complete definition is left up to the imported module. 

• The export part EXP identifies those sorts, operations, and equations that are visable outside the 
module. The export part can be used to hide the representation of data and functions, and to hide 
auxiliary sorts and operations. 

• The parameter part PAR contains sorts, operations, and equations which are common to the import 
and export parts. These components are intended to be generic parameters of the entire modular 
system and may be instantiated with particular values. 

• The body part BODY contains equations which define the operations of the export part in terms 
of the operations of the import part. The body may contain auxiliary sorts and operations which 
do not appear in any other part of the module. 

These algebraic datatype specifications are connected by specification morphisms t : PAR —* IMP, 
e:PAR-* EXP, s:IMP-*BOD, and v:EXP-*BOD such that the diagram in figure 1 commutes. 
The semantics of MOD is given by the function SEM : Alg(IMP) —♦ Alg(EXP) mapping import 
algebras to export algebras as follows: SEM = FORGET, o FREE,. A module specification is said 
to be correct if it is strongly persistent, i.e., if the free construction FREE,: Alg(IMP) —» Alg(BOD) 
leaves the semantics of every import algebra unchanged. 

Horizontal structuring operations are used to build up module specifications. The most commonly 
used horizontal operation is composition. The composition of module specifications MODi and MODt, 
denoted MOD\ m MODj, connects the import part of MODi with the export part of MOD], as shown 
in figure 2. The connection is established by a pair of specification morphisms h\ :IMP\ —* EXP2 and 
hj'.PARi —»PARi. The composite module MODs has the same import part as MODj, the same export 
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PAR3 = PARI — EXP1 » EXP3 

PAR2 

IHP3 = IHP2 

(1) 

si 

(4) 

dOül 

-Ö002  s* ' B005 
Figure 2: Composition of Module Specifications 

IMP2 
S2 

B0Ü2 

Figure 3: Refinement of Module Specifications 

and parameter parts as MODi, and body given by the union of the bodies of MODi and MOD2. The 
subdiagrams (1), (2), and (3) must commute and (4) is constructed as a pushout diagram. A fundamental 
result here is that, if MOJDi and MOD2 are correct, then MOD3 is correct and its semantics SEM3 is 
given by SEM3 = SEMX o FORGET^ o SEM3. 

Vertical development steps transform abstract specifications into more concrete forms. The most 
commonly used horizontal operation is refinement Intuitively, a refined specification more completely 
describes the resources that the module will produce and the resources that are required to produce 
them. A refined specification has additional sorts, operations, and equations in its import, export, and 
parameter parts. A specification and its refined version are connected by three specification morphisms 
rP: PARx — PAR2, rE: EXPX — EXP2, and rj: IMPt -» IMP2 as shown in figure 3. All subdiagrams 
in this figure must commute. This is called a weak refinement since it satisfies only basic syntactic 
requirements. A weak refinement is called a refinement if the modules are semantically compatible with 
respect to their common elements, i.e., if SEMi o FORGET,, = FORGETTa o SEMj. 

A fundamental result here is that refinement is compatible with composition. Given (weak) refine- 
ments MODi by MOD[ and MOD* by MOD3, and well-defined compositions MOD, = MOD^MODj 
and MOD'3 = MOD{ • MOD'2, there is an induced (weak) refinement of MOD3 by MOD'3. 

An interface specification gives the external features of a module without describing how it is to be 
implemented. An interface specification INT = [PAR, IMP, EXP, i, e) is simply a module specification 
without a body BODY and the related morphisms s and v. Horizontal operations, such as composition, 
and verticul operations, such as refinement, can be restricted to interface specifications. A realization of 
an interface specification is a module specification which implements it. A realization is given by a triple 
of specification morphisms satisfying the same properties as a weak refinement. 
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4    Module and Configuration Families 
We define a module family to be a set of module specifications, each of which realizes a common interface 
specification. A module family MODFAM = (INT,(MODj,Tj)jej,REL) consists of an interface 
specification INT called the abstract interface of MODFAM, a family of module specifications MODj 
and realizations TJ : INT - MODj for each j € J, and a set of relations REL on J. The index set J 
is assumed to be empty when a new module family is created. An update of the module family entails 
modification of MODj, TJ and the corresponding set J. The set REL is intended to include different 
relations, such as refinement, between the versions of MODFAM. 

A configuration family is a set of compound modules constructed in a uniform way from a set of 
module families. Given an n-tuple of module families MODFAMi = {INTi^MOD^n.^j^RELi) 
for i = l,...,n, a configuration family CONFAM = (INT,OP,J,f,REL) consists of an interface 
specification INT called the abstract interlace of CONFAM, an n-ary horizontal operation OP, a 
version index set J, an n-tuple of version functions / = (/<:/-> Ji)i=i,...,n, and a set of idations 
REL on J. The version functions select n-tuples of module family members to be combined, using OP, 
to produce members of the configuration family. Each such n-tuple defines one configuration given by 
some j 6 J. The corresponding n-tuple is (MOD\j,...tMOD\j) with MOD* a = MODiMj) for 
t = 1,..., n. Four basic consistency conditions must hold. For example, version consistency makes sure 
that the tuples of modules can be appropriately combined. We have the following fundamental results. 

• Induced Module Family: There is an induced module family corresponding to the result of applying 
OP to those members of MODFAMi given by the version functions. 

• Induced Refinement: Refinements between members of the module families induce refinements be- 
tween corresponding configurations in CONFAM provided that certain basic compatibility con- 
ditions hold. 

• Induced updates: Given an update ot MODFAMi by additional realizations, there is an induced 
update oiCONFAM by additional realizations provided that certain basic compatibility conditions 
hold. 
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Introduction 

We develop a model of the early stages of language design based on universal algebra, and apply this model to a 
key issue in early design. The benefit of an algebraically based design model is that it allows us to rationalize 
aspects of design which are otherwise isolated as mysterious processes with little structure. In turn, the benefit of 
this rationalization is that is allows designs to be made definite, concrete and visible. It is possible to use such 
designs to reason about design issues. The particular issue to which we apply our model is that of reusability of 
designs: Suppose a language is designed which lacks an important property. How might the language be altered, or 
redesigned, to obtain that property? The particular class of properties that we focus on here concerns the the stages 
of evaluation of a language (compile time and run time are examples of stages) and the desire to maximize or 
ntinimize the amount of evaluation that goes on at each stage. Our claim is that the usual types of language 
definition and language design tools do not aid the designer in exploring language choices, while ours do. 

We have not worked out a model that demystifies every aspect of language design, but we do know how to deal 
with some important features, and can tell a complete story about abstract representation of "stages of evaluation" in 
a language definition, based on a notion of removal of information from an algebraic representation of a language. 
[Bradley 88] and [Bradley 89] give more details of some of the underpinings of the approach that is outlined below. 
Our goal in this abbreviated paper is to introduce two key notions. One is the notion of an early stage of language 
design. An early stage is characterized by a lack of syntax, and by wild experimentation with the structure and 
contents of the basic semantic domain. A late stage, in contrast, is characterized by fairly well accepted syntax, a 
well understood semantics (informal, at least) and virtually no experimentation with the basic semantic domain. The 
second notion we introduce is of staged evaluation of an expression in a language. One of the key concerns of a 
language designer in the early stages is to design a language so that it can be efficiently evaluated. This usually 
boils down to meaning that efficiency at some stages (such as compile time) will be happily sacrificed to improve 
efficiency at other stages (such as run time). This paper outlines a way to examine and manipulate stages of 
evaluation early in the formal design of a language. 

The early stages of design (informal) 

Unlike syntax and semantics, design is not an aspect of artificial languages that has been amenable to 
formalization. Most studies of the design of programming languages have been extremely informal ([Ghezzi 87], 
[MacLennan 87], [Hoare 73], [Wirth 74], for example). Typically, these treatments are advice on the properties a 
language should have, such as orthogonality and readability. More formal approaches to language design, range 
from early work on extensible languages to very recent work on semantics based design and tools for language 
specification ([Paulson 82], [Lee 87], [Blikle 86] and [Ligler 75]). These approaches are uniformly based on the 
idea that language design begins when a syntax is formally defined, and finishes when a notion of semantics is made 
precise. More useful are approaches such as Pratt's ([Pratt 83]) describing signifcant paradigm shifts in the design 
of languages, and approaches that deal with the design of constructs to solve particular problems, such as [Hudack 
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88],and[Solworth88]. 

At a more practical and realistic level language design begins with the design of the semantic domain - the 
decision on what is to be represented in the language. This decision requires insight, imagination, and deep 
understanding of the particular domain. In the earliest stages of design language designers are not faced with issues 
such as whether the constructs in the language are orthogonal or readable. These issues are so generic that advice on 
them can not help a designer faced with the particular problems of a specific domain. Some of the realistic 
questions of the early design stage are the following. A designer might 

• want to develop language constructs for highly parallel operations on list (See [Solworth 88], for 
example) 

• want to design a language in which software faults are reduced. This requires a thorough understanding 
of how software faults occur, followed by a design of constructs to avoid them. 

• feel that it is necessary to allow some type cheating in a language, but might also want to restrict it The 
designer might want to develop a construct for "structured" type cheating, but may be unsure how the 
structuring should be done, (see [Gesenke 77] for a discussion of this in Mesa.) 

• want to allow a wide variety of notions for arrays, from static, as in Pascal, to fully dynamic, as in APL, 
but may not understand the affects this decision will have on the compilation and run time of the 
programs. 

The typical, extremely general, advice given in informal treatments of language design is not useful in these sorts 
of design situations, and neither are the semantics based language design tools, since they force the designer to start 
by giving a syntax, and these issues are prior to that stage. 

The early stages of design (formal) 

The model of language design that we present here rationalizes design by presenting it as definitional, informative 
and concrete. By definitional we mean that the formal expression of the design can be used to define the language. 
By informative we mean that information about the language that is lacking in other forms of definition, for example 
syntax and semantics is present in the formally expressed design. By concrete we mean designs done in steps so 
that they have stable intermediate results, and so that the method of going from one stable intermediate to another is 
describable and computable. 

The model of language design can be summed up as follows. All language design starts with a world, which has 
structure. Informally, a world is anything that can be symbolized, and its structure is a classification of the types of 
objects, functions and relations in the world. Formally, a world is a many-sorted algebra, and its structure is 
identified with the signature of the algebra. 

Language design proceeds as a sequence of decisions on how to represent the objects, functions and relations of 
the world. In the early stages of design the crucial step is acquiring new world views by manipulating world 
structure. The variation in world views may be extreme - for instance replacing horn clauses without equality by 
equational logic in the logic underlying a relational language such as prolog - or it may be minor - choosing a new 
name for an object In our model of design each of these manipulations is a mapping from algebras to algebras. The 
final result is a design which is expressed as a sequence of such mappings. Designs rationalized in this manner are 
then open for inspection and manipulation. 

Our model of design is based on three kinds of manipulations. These are 

• Metaphor or Structure adoption. This is the most radical kind of manipulation that can be performed on 
a world, and is loosely analogous to the working of metaphor in natural language, where the structure of 
one domain is adopted to structure another domain. For example, the linear ordering on temperatures, 
can be used to order the domain of putters, as in "His putting is hot", in which the implication is that his 
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putting is very "high", or good. With respect to language design, the following are examples of 
structure adoption: A construct, such as a new repeat statement, could be added to the language from 
another language. A more complex example, which happens quite often, is to adopt structure within the 
language from its semantic domain. For example, the semantics of a read statement might involve 
checking the next input value to ensure that its type is compatable with the type of the variable being 
read to, and invoking an error continuation if it is not Adopting this action of the runtime system into 
the language itself is very useful, and amounts to allowing programmer control over exception handling 
for read. 

• Structure reshaping. In this manipulation the structure of the world is altered, but in such a way that all 
the computations expressible in the original world, or some subset thereof, are expressible in the altered 
world. This kind of manipulation is exemplified by activities such as forming a derived operation over 
the original algebra, merging separate operations into one, or renaming an operation. 

• Splitting. In this manipulation the structure of the world is represented joimly by two or more separate 
worlds. This manipulation allows the language designer to introduce stages of evaluation into the 
language, as will be described more below. The intuition behind this is that the designer can control the 
stage at which information about objects becomes available by removing them, or parts of them, from 
the original algebra and placing them in associated algebras which are available at another stage of 
evaluation. 

A particular problem concerning "stages of evaluation" 

We can apply this formalization of the early stages of language design to an issue which is central to design. The 
issue is this: Suppose we have a language L, defined by grammar G and semantics S, which does not satisfy some 
property P. What changes we can make to L (that is, to G and S) so that the changed language L\ defined by 
grammar G\ and semantics S\ satisfies P? This is clearly a central issue in design; it is also quite vast We 
examine instances of this question for a class of properties that capture aspects of time of evaluation for expressions 
in a program. In particular we restrict our attention to the solution of this problem for properties that concern the 
"stage of evaluation" at which certain information is known about a program. For example the property of being 
statically typed - i.e. the property that all types can be determined at compile time - is such a property. We will 
now discuss the idea of stages of evaluation more generally. 

What are stages of evaluation? 

The usual way of thinking about language evaluation is timeless. An expression in a language is given a meaning 
by the semantic function which maps expressions into meanings and their is no notion of stages in this evaluation. 
Yet in both natural and artificial languages there are many examples of languages whose semantics are given in 
stages. For example, in natural language semantics the classical treatment of intension and extention is a strategy 
for separating the "meaning" of a sentence in the abstract - the intension, given as a function from possible worlds 
to truth values - from the "value" of a sentence as used in a particular situation - the extension, given as a truth 
value. In modern unification-based treatments, such as Head-driven phrased structure grammar ([Pollard 87]) a 
similar recognition of the stages of evaluation for natural languages is expressed in the treatment of the meaning of a 
term as coming about in a cummulative fashion via the interaction of constraints arising from several sources 
(phonological, syntactic, semantic, contextual). 

Artificial languages too, have this same aspect. In particular, the evaluation of a program in a programming 
language can be viewed very naturally as coming about in a cummulative fashion via the interaction of information 
about its evaluation that is gathered at various stages. For example, a classical instance of this is the representations 
of finite mappings in programming languages. Most languages support the same notion of finite mapping, as arrays, 
but they differ widely in the constraints they place on the stages of evaluation at which information about the finite 
mapping has to be known. In Pascal all information about the finite mapping, including all dimension, bounds and 
component type, has to be present in the text of the program itself; in AlgolW all information about dimension and 
component type has to be present in the program text, but the information about the bounds can be delayed until the 
execution of the prologue to the block in which the array was declared is executed; finally, in a language such as 
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APL no information about the dimension, bounds, or component type has to be fixed in the program text. Rather, all 
of this information can be supplied repeatedly at run-time. 

This notion of stages of evaluation is important because many aspects of the efficiency of program evaluation are 
tied to it Abstractly, when evaluation of a program occurs in stages it is typical that these stages are not viewed 
uniformly. It is much more important for some stages to be performed quickly, or using less space, than it is for 
others. Each stage uses resources of time or space differently, and it is often a key goal of language evaluation to 
shift activities from one stage to an earlier or later one so as to improve the efficiency of a critical stage. Not only 
does this discussion characterize the distinction of "compile-time" (where time efficiency is usually not critical) 
versus "run-time" (where time efficiency is often critical), but it also characterizes the various stages of compile- 
time itself: the ordering of the activities of optimization, intermediate code generation, and register allocation is 
often critical to the efficiency of the compiler, and to its ability to perform some activities at all. 

How do stages of evaluation show up in a semantics? In a denotational semantics they do not show up at all. In 
other kinds of semantics, for example VDM, they show up very concretely as fixed times (compile-time, run-time) 
with respect to which program evaluation has to be expressed. One of our goals is to develop a style of writing 
semantics so that the staged evaluation of a language can be expressed naturally. Also, so that the properties of the 
computation that occur at each stage (time and space requirements, for example) can be analyzed. 

What is the significance of stages of evaluation for language design? Given that a language designer has a desire 
to represent some given world in a language, and given constraints about what information must be known at 
various stages of evaluation, or what activities must happen at various stages, what are a language designers 
choices? Clearly, the designer must attempt to design a language so that the constraints on the stages of evaluation 
are satisfied. 

Given the model of design that we propose, we can describe the range of languages that could be used as 
languages for some underlying world of interest Also, we can show how a language that lacks some property can 
be can be redesigned to acquire it 

The designer's choices: How stages of evaluation are manipulated in designs 

The goal of the current work is to be able to express the important practical phenomena of stages of evaluation in 
terms of removal of information from an algebra representing a language or world. Also, we want to be able to 
reason about solutions to problems in languages concerning stages of evaluation. The removal of information from 
an algebra forces the need for a later stage of evaluation in which the information is presented. There are two 
important aspects of this. One is that when information is removed from an algebra the meanings of the remaining 
objects have to change. Intuitively, if one designs a language to represent some world, one would expect that the 
meanings of the constructs in the language would have to change in proportion to the difference between the 
structure of the world and the structure of the language. In the case of splittings the meanings of the constructs left 
behind are functions of the information removed. The second important aspect is that evaluation that took place at 
one stage before might now be shifted to another stage, and that this shift might be unacceptable for reasons of 
efficiency. 

In the case that the shift of evaluation to another stage is unacceptable, the language designer has two choices. 
One is to simply undo the design step that introduced the shift of parts of the evaluation to the new stage. The other, 
more interesting alternative, is to attempt to incorporate into the language a version of the actions that have been 
delayed to a later stage. Algebraically, this amounts to raising semantic operations to the level of the language. 
Although it was, of course, designed by completely different methods than the ones we propose, the Algol68 variant 
case statement provides an excellent example of the one of the kinds of constructs that emerges from this strategy of 
incorporating late stage semantic activities into the language itself in our design model. This statement forces the 
programmer to explicitly code for the checking of the current type of the variant, and to provide statements to be 
executed in the case of any possible outcome of this check. This assures that type correctness of the program can be 
determined at compile time, even though the presence of variants for which value and type information is delayed 
until runtime would seem to preclude that. 
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1.    Overview 

The point of this paper is to describe a challenging application of algebraic methods 
to programming language theory. Much work on the theory of Scheme-like languages 
(applicative, but not necessarily functional) has an essentially algebraic flavor [Talcott 1985] 
[Felleisen, Wand, et.al. 1988]. Thus it seems appropriate to make the algebraic aspect 
explicit. This would allow us to take advantage of the work in algebraic methods to extend 
and generalize existing work and to facilitate application of the results. Full support of this 
application of algebraic methods will require bringing diverse results together in a single 
enriched framework. 

The goal of our work is to develop a general semantic framework that provides a formal 
basis and tools for a wide range of programming activities such as: design and implementa- 
tion of languages; dynamic language extension; building programming environment tools; 
specifying programs, including programs that operate on other programs; proving properties 
of programs; and program transformation, including compiling, high-level optimizations, 
partial evaluation, programming-in-the-large, and program derivation. 

To support such a range of activities it is necessary to support a variety of program- 
ming paradigms and to provide many views of programs: programs as data to construct, 
transform, and annotate; programs as descriptions of computation to execute and analyse; 
and programs as black boxes distinguished only by observable behavior. To effectively use 
the various views of programs one also needs formal connections relating them. 

An algebraic setting provides a unifying framework for the various views of programs. 
The use of syntactic algebras, data algebras, and algebras of computation states provides 
a uniform treatment of data, textual, and control abstraction mechanisms in languages. 
The semantic equivalence relations induced by models of a specification correspond to a 
generalization of the notion of comparison relation [Talcott 85] with equivalence in terminal 
models being the maximal such equivalence. Placing our work in an algebraic setting also 
increases the potential for cross fertilization with other approaches such as abstract actions 
[Mosses 84] and the categorical view of computation [Moggi 89]. 

t This research was partially supported by DARPA contract N00039-84-C-0211 
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2.    Applicative languages 

We start from Landin's view of programming languages as enriched versions of the 
lambda calculus [Landin 66]. Particular languages are determined by choices for abstract 
computation states, primitive data, and primitive operations to enrich the basic mech- 
anisms of naming, abstraction, and application. Within this framework we can treat a 
variety of programming primitives including functional abstractions, control abstractions, 
objects with memory, dynamic environments, and reflection mechanisms. We study notions 
of program equivalence, formal systems for proving program equivalence, tools for com- 
piling and transforming, derived computations (non-standard interpretations) such as cost 
of execution, reference count, strictness, trace, and abstract interpretations.1 To illustrate 
some of the issues we will outline the kernel of this family of languages and discuss various 
extensions, and refinements. 

2.1.    The kernel 

The language consists of expressions Exp generated from given sets of variables Var 
and constants Con by application and abstraction. Ve is the set of value expressions — 
variables, constants, and abstractions. 

Ve = Var + Con + AVar.Exp Exp = Ve + app(Exp, Exp) 

We adopt the convention that exp, exp0, .. .range over Exp, ve, ue0,.. .range over Ve, and 
similarly for other syntactic and semantic domains. The basic semantics is given in terms of 
computations states and transitions. The semantic domains include values (Val), environ- 
ments (Env), continuations (Cnt), and states (St). Values include constants and closures 
of lambda expressions <\var.exp, env>. Environments are finite maps from variables to 
values. Continuations are stack like objects that describe the rest of the computation. 
States are tuples with at least a local component and a continuation component. The local 
component is either an expression-environment pair or a value. 

Val D Con + <AVar.Exp, Env> Env = [Var i> Val] 

Cnt = {top} + appi(Exp, Env, Cnt) + appc(Val, Cnt) 

St = <Exp, Env, Cnt,.. .> + <Val, Cnt,.. .> 

Transitions are defined by the single step relation *-+. The rules for application are: 

<app(ezp0, expx), env, cnt> *-> <exp0, env, appi(eip1? env, cnt)> 

<val, appi(exp1, env, cnt)> >->■ <exp1,env, appc(uaZ, cnt)> 

<val, zpipc(<\var.exp, env>, cnt)> <-+ <exp, env{var := val}, cnt> 

For examples see [Talcott 85,86], [Mason 86], [Felleisen 87], [Mason and Talcott 89a,b]. 
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2.2. Adding primitive operations 

We extend the kernel language to treat such programming primitives as abstract data 
types (natural numbers, lists, ...), control abstractions, objects with memory, dynamic 
binding, and reflection mechanisms. For example to treat objects with memory we assume 
memory operations such as mk, get, set are among the constants. We add cells to the value 
domain, a memory component to states, and rules for applying memory operations. 

Val D Cel Mem = Cel -^ Val 

St = <Exp, Env, Cnt, Mem,.. .> + <Val, Cnt, Mem,.. .> 

<val, appc(mk, cnt), mem> i-+ <cel, cnt, mem{cel := val}>       7. if cel $ Dom(mem) 

The rules for application are as before since the memory component is unchanged by these 
transitions. 

2.3. Denotations and program equivalence 

To define evaluation we introduce an answer domain Ans and an operation Unload 
mapping final states <ua/,top,.. .> to answers. A program context cxt is an environment 
together with the non-local components of a state. The evaluator Ev maps expressions and 
program contexts to answers and is defined by Ev(ezp, cxt) = ans if <exp,cxt>'»-» st for 
some final state st such that Unload(sf) = ans, where £■ is the transitive reflexive closure 
of H*. From this definition we can derive the usual equational definition of a denotational 
interpreter. We can then abstract on the semantic domains to admit a wider class of models. 
The denotation of an expression is then a partial function mapping program contexts to 
answers. 

By a program equivalence relation we mean an equivalence relation on expressions. 
We use several notions of program equivalence. An operational equivalence relation is 
determined by a set of program contexts and a notion of indistinguishability of answers. Two 
expressions are operationally equivalent if in all relevant contexts they give indistinguishable 
answers. Contexts can be either semantic contexts as above or expressions with holes. A 
denotational equivalence relation is determined by a class of models. Two expressions are 
denotationally equivalent if they have the same denotation in all models under consideration. 
A program equivalence may also be characterized as the least or greatest equivalence relation 
satisfying some closure conditions. For example a reduction calculus is determined by a set 
of reduction rules and the induced equivalence is the congruence closure of the reduction 
rules. 

2.4. Intensions 

As a tool for studying intensional aspects of computation we introduce the notion 
of derived computations. Let Dval be a domain of derived values. Derived states are 
state-derived value pairs. A derived computation is determined by a derivor map D £ 
[St x St x Dval ->• Dval]. Rules for transitions on St x Dval are obtained from the 
basic transition rules by defining <st,dval> >-* <st',D(st,st',dval)> if st >-> st'. A de- 
rived evaluator Dev is obtained from a derived computation by specifying a derived answer 
domain Dans and a derived unloading operation Dunld € [St x Dval -*■ Dans].  Then 
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T>ev(exp,cxt,dval) = dans if «exp, cxt>, dval> A <st,dval'> for some final st such that 
Bnnld(st,dval') = dans. As with the standard evaluator we can abstract from the state 
transition definition and also provide a basis for developing computable approximations. 
Reference counting and cost analyses can be explained by derived computations. Several 
examples of derived computations are worked out in [Talcott 86]. 

If we want to reason about occurrences of expressions we can replace expressions by 
labels together with a map fetch from labels to a pair consisting of a tag and a label 
sequence. A tag is either app, Xvar, a constant, or a variable and the label sequence 
labels subexpression occurrences. Transition rules are modified accordingly. For example if 
fetch(lab) = (app, [lab0, lah]) then <lab, env, cnt> w <lab0, env, appi(fo*i, env, cnt)>. 

3.    Towards an algebraic theory 

To make the algebraic aspects of our theory explicit we work with programming lan- 
guage algebras (PL algebras). Following [Broy, et. al. 1987] our PL algebras specify 
syntactic and semantic entities in a single (partial) algebraic theory. The theory has a 
kernel which is elaborated and refined in various ways. In the algebraic setting these can 
all be thought of as operations on theories. Some operations change the theory while some 
only change the presentation. Most operations are naturally determined by local features. 
Operations illustrated above include: adding new semantic domains, adding summands to 
domain equations, adding components to structures, restructuring — replacing states by 
expression-context pairs or replacing expressions by locations plus the fetch map, addition 
of transition rules, and lifting of transition rules on enriched states. 

To study program equivalence we need mechanisms for specifying classes of program 
contexts, notions of indistinguishability of answers, and classes of models. We also need 
mechanisms for handling reduction rules, for expressing closure operations such as congru- 
ence, transitive, and equivalence, and more generally for forming least or greatest relations 
satisfying certain conditions. We also need tools for reasoning with and about the resulting 
relations based on the form of definition. One goal of our generalized algebraic framework 
is to obtain a deeper understanding of operational equivalence by examining richer classes 
of observing contexts. Thus it will be of interest to consider non-reachable models and 
families of models parameterized by classes of primitive operatations. 

To provide tools for program analysis we need tools for abstracting and encapsulating 
various levels of specification, for instantiating to particular interpretations, for refining an 
interpretation, and for relating different interpretations. This suggests treating abstractions 
of specifications and descriptions of particular interpretations as first class objects with tools 
for doing "algebra-in-the-large". In many cases we need to focus attention on particular 
models by specifying additional axioms and model-theoretic constraints such as initiality, 
finality, reachablility. Thus a formal language for expressing some class of model-theoretic 
constraints would be of great help. 

Finally we will want to embed PL algebras into mechanized reasoning systems to fa- 
cilitate semantics based formal reasoning about programs. In particular we will want the 
ability to express and reason about general first order or even higher order properties. This 
is a challenge both to algebraic methods and to builders of mechanized reasoning to systems 
to make natural embeddings possible. 
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The increasing requirement for flexibility and efficiency of various complex programming 
applications demand the new programming languages to be extensible. The existing lan- 
guage extension methods allow only static extensibility of programming languages. These 
methods are restricted to be static by language implementation by means of syntax- 
oriented compilers and hence, they do not allow dynamic changes (i.e. adaptation or 
extension of the language according to the real needs of the language user). 

The dynamic extension of programming languages is not a new problem. However, 
its actual solution and implementation on specific cases have not been fully explored. 
This is due to the fact that the language extension is very complex and difficult to apply 
in the environment of language specification by grammar and syntax-directed compiler 
implementation controlled by derivations using the specification grammar. We will sketch 
in this paper a model for language extensibility based on the dynamic extension of the 
language semantics in an environment in which language specification rules are interpreted 
as operation schemes of an algebra rather then rewriting rules of a context-free grammar. 

The mathematical machinery providing support for the design of programming lan- 
guage semantics is the HAS hierarchy [Rus83]. The HAS hierarchy allows the creation of a 
formal mechanism for the specification of the concept of an hierarchical abstract computing 
system. The objects that belong to such an abstract computing system are represented as 
formal expressions which are organized into an algebra of words W [Gra68], [Pur77] and 
can be constructed dynamically following a hierarchy of layers[Rus83], each layer being 
constructed on top of the previous layers of the hierarchy. Therefore, the concept of an 
abstract computing system is considered here as the mathematical support for dynamic 
specification of the semantics of a programming language. It is is specified by means of a 
hierarchy of heterogeneous algebras. 

A heterogeneous algebra is a triple 

A = {D,XS,F} 

where D is the set of primitive and composed computing objects, ES is the operation 
scheme set, consisting of primitive and composed operation schemes, while F is the func- 
tion which associate to each operation scheme a € ES a computing operation. The 
assumption is that the carrier D of the algebra A is a family of sets D = {A|* = 
0,1,...n} and the operation schemes in ES can be organized into a hierarchy ES = 
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{HAS (0), HAS (1),.. •, HAS (p)} such that if a € HAS (0) then F{a) is a nullary-operation, 
that is, F(a) is a constant in a set Dh 0<j<n. For each t > 0, if a e HAS{i), F{a) has 
as the domain a direct product of sets used as ranges of the operations associated with 
the operation schemes in HAS{i - 1),... tHAS(0) and as the range a set already used as 
the range of operations in HAS{i - l),..., HAS{0), or a new set of D not yet used as the 
range of any other operation. 

The computation behavior of each operation associated with the operation schemes as 
shown above is specified by a collection of specific formal identities. 

The objects of the abstract computing system are represented as formal expressions 
organized into a heterogeneous algebra of words 

W(V) = {V,i;S,F} 

where V is a set of symbols used to denote constants of the computing system and for 
each a € ES, F{a) is a rule of word formation under the restrictions specified above for 
the algebra A. 

The notion of semantics dynamic extensibility is expressed by the dynamic character of 
the algebras A and W. It allows dynamic definition of new operations in A which supply 
new dynamic expression forms in IV. Since A and IV are two similar algebraic structure, 
their dynamic extensibility are related by homomorphisms / : A -* IV and e : IV -> A such 
that / = c-1 and c = f~l. The construction of these homomorphisms can be sketched 
as follows: Since IV is an initial algebra of the class of algebras specified by ES there 
exists a unique homomorphism h : IV -* A that coincides with a function e : V -*• D 
on the generator set V. On the other hand any surjective function defined on the free 
generators of the carrier of the semantic algebra and taking values in the free generators 
of the algebra IV can uniquely be extended to an homomorphism. It can be shown that 
this homomorphism is an inverse of the homomorphism obtained by extending c to the 
homomorphism e* : W -*■ A that evaluates the free generators of IV to the values they 
denote and conversely. Moreover, this property is preserved by dynamically extending the 
original heterogeneous algebras A and W by taking their carriers as index sets of the family 
of sets supporting a new level of heterogeneous algebras. Since the carrier of a programming 
language algebra has a finite set of generator classes, this construction can be used to put 
together the syntax algebra and the semantics algebra of a programming language into a a 
programming language specified by a pair of algebras related as above and to organize them 
into a hierarchy of layers. Thus, the process of dynamic extension of the expression forms of 
an algebra can directly be applied to the dynamic extension of the programming language 
semantics. An application of this result is shown in the context of Clear specification 
language in [Bur80]. We illustrate this application developing a semantics model of a 
Pascal-like programming language expressed in terms of its representation in a machine 
meant to implement it. This is done by layering of the language algebras on the following 
levels: 

• Let Do be the set of primitive data types of a programming language. This set can 
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be organized as an algebra 

A, = {Do,n0iFo:n0-^I} 

where fi0 is the set of symbols denoting nullary-operations defined on the carrier 
set of the primitive data types, F0 is the function that associates to each a S fi0 

its memory representation length in standard units (bytes, words, etc), while I is a 
subset of natural numbers. The set I will be taken as the index set of the next level 
of the language hierarchy. 

• The level 1 of the language hierarchy is defined using the level 0 as the selector set 
for the domain of the operations on level 1 and has the form: 

Ax = {£>i = {AI« € I}, {XS0)oetto,F0 : A - I, *i} 

where: 

- D\ represents a partitioning of DQ into classes of data types, the partitioning 
criterion being the representation length. 

- ES„ is the set of operation schemes providing the definition of the new types of 
objects in terms of objects of level 0. 

- FQ is a function specifying the domain and the range of all operation schemes of 
the new operations while F\ is the function that associates the new operation 
schemes with computation rules. 

• In order to define the level 2 of the language hierarchy one must consider the man- 
ner of data interpretation. This is performed by considering the following algebra 
specifying the semantics of level 2: 

A2 = {D2 = {Dij\i € JV-.j 6 M}, {2S0iJ)tFt: Dtx M -+ N x M,F'2} 

where: 

- Dij represents the carrier of the x-th length data type interpreted in the j- 
manner. 

- ES«,,.. is the set of operations schemes of the new language level. 

- Fi specifies the index set of the carrier D2 of the level 2 of the language algebra 
while F2' is the function that associates each operation scheme o € HS0.y and a 
j-manner of interpretation with a heterogeneous operation specific to the level 
2 of the hierarchy. 

- The set M contains possible manners of interpretation while the set N contains 
possible interpretation lengths. 
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• The level three of the language algebra hierarchy is specified by 

A* = {Dz = {Di\i€l},(i:Si),Fi} 

which allows the definition of certain type constructors for the introduction of the 
Pascal like data types record, file, set. This level of the language algebra hierarchy 
will preserve the carrier of the preceding level and will enrich it with new operations 
characteristic to the newly defined data types. 

The mathematical machinery developed in [Rus83] under the name of Heterogeneous 
Algebraic Structures, HAS-hierarchy, models the construction of the new types of objects 
and allows the dynamic extension of a language algebra on a practical unlimited number of 
layers. The construction of the new layers of computing objects supported by the language 
depends only on the types of objects required by the application and the imagination 
and the ability of its constructor. The application of this mathematical machinery for 
language development allowing dynamic language extensibility according to the language 
user computing needs is shown in [Rus88]. 
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The main question addressed in this talk is: 

What is a logic? 

that is, how should general logics be axiomatized? The talk, based on a recent paper 
of mine1, proposes a specific axiomatic answer to this question and applies that answer 
to obtain axioms for logic programming. 

Beyond their application to logic programming, the axioms given here for a logic are 
sufficiently general to have wide applicability within logic and computer science. The 
connections between these two fields are growing rapidly and are becoming deeper. 
Besides theorem proving, logic programming, and program specification and verifi- 
cation, other areas showing a fascinating mutual interaction with logic include type 
theory, concurrency, artificial intelligence, complexity theory, databases, operational 
semantics and compiler techniques. The concepts presented in this talk are moti- 
vated by the need to understand and relate the many logics currently being used in 
computer science, and by the related need for new approaches to the rigorous de- 
sign of computer systems. Therefore, this work has goals that are in full agreement 
with those of J.A. Goguen and R. Burstall's theory of institutions; however, it ad- 
dresses proof-theoretic aspects not addressed by institutions. In fact, institutions can 
be viewed as the model-theoretic component of the present theory. The main new 
contributions include a general axiomatic theory of entailment and proof, to cover the 
proof-theoretic aspects of logic and the many proof-theoretic uses of logic in computer 
science; they also include new notions of mappings that interpret one logic (or proof 
calculus) in another, an axiomatic study of categorical logics, and the axioms for logic 
Programming. 

"Supported by Office of Naval Research Contracts N00014-82-C-0333 and N00014-86-C-0450, NSF 
Grant CCR-8707155 and by a grant from the System Development Foundation. 

1 "General Logics" in: H.-D. Ebbinghaus et al. (eds.) Proc. Logic Colloquium'87, North-Bolland, 
1989. 
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1. Background 
The theory and practice of specification languages for data communications protocols and services 
(often called Formal Description Techniques or FDTs) has been the object of much recent 
interest Formal and exact specifications of protocols and services are useful in every phase of 
the protocol development life-cycle. Even more, they are essential for protocols and services that 
are international standards, meant to be implemented in compatible ways across the world. The 
specification must capture those features of an implementation that are necessary for it to be able 
to communicate with other implementations. Therefore, it is important that the specification be 
precise and implementation-independent 
The International Organization for Standardization (ISO) has been developing over the years a 
family of standardized data communications protocols, called OSI (Open Systems Interconnec- 
tion). At the very beginning of this effort it was recognized that, in order for OSI to be a real 
standard, it was necessary to provide it with an appropriate FDT, in which OSI standards could 
be specified. An international committee (of which the author of this paper is a member) set out 
to produce such a standard FDT, and, some years later, the language LOTOS has now become an 
International Standard [ISO]. Interestingly enough, the language is turning out to be very 
appropriate not only for OSI protocols and services, but also for a wide family of distributed sys- 
tems. In this paper, we intend to offer a very brief overview of the basic philosophy of LOTOS 
and of research work being carried out around it Much additional information on LOTOS can be 
found in [WD][ISO], and in the annual series of Proceedings Protocol Specification, Testing and 
Verification, published by North Holland. 

2. LOTOS Principles 
LOTOS, the Language of Temporal Ordering Specifications, is one of the most precisely defined 
languages in use today. Its static semantics are defined by an attributed grammar, while its 
dynamic semantics are based on algebraic concepts. LOTOS is made up of two components: a 
data type component which is based on the algebraic specification language ACT ONE [EM], 
and a control component which is based on a clever mixture of Milner's CCS [M] and Hoare's 
CSP [H]. Most of the theoretical framework of the control component, and especially the concept 
of internal action are based on Milner's work. In particular, non-determinism is modelled by 
internal actions as in [M] rather than by adding special operators as in [H]. The rendez-vous 
semantics follow Hoare's "multi-way rendez-vous" concept, by which all processes that share a 
gate must participate in a rendez-vous on that gate. Actions, however, can be transformed into 
internal actions by hiding them. In this way, further participation in the action of processes out- 
side the hide is prevented. 
LOTOS dynamic semantics for the control component is expressed in operational terms by infer- 
ence rules as in [M], and the operators were chosen in such a way that it has been possible to 
prove about them a rich set of algebraic properties, similar to those of [Mj. Therefore, the 
language is at the same time "executable" (by virtue of the operational semantics), and amenable 
to proof techniques (by virtue of the algebraic properties). 
The language is purely recursive in nature, without side effects. It supports process parameteriza- 
tion, where it is possible to specify both value and gate parameters. 
Some of the most important operators of the control part are: [] (choice), |[A]| (parallel execution 
with synchronization via gates in set A), || (parallel execution with synchronization on all gates), 
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Ill (parallel execution in interleave), hide (hiding of gates), » (sequential composition of 
processes), and [> (disable, modelling a nondeterministic interruption). 
The data part supports parameterized types, type renaming, and conditional rules. 
Because of the fact that LOTOS is made up of what its designers viewed as the most valid parts 
of CCS and CSP, the language has considerable expressive power. It favors a highly structured 
specification style and top-down, as well as bottom-up, design. For example, following some 
ideas already present in [H]» "constraint-oriented" specifications are possible in LOTOS, i.e. a 
specification can be designed as a collection of processes each one of which imposes its own log- 
ical constraints on the overall system behavior (this turns out to be a powerful way to impose 
"separation of concerns"). Other styles, useful for different purposes (e.g., implementation 
specification, state-oriented specification, etc.) are also possible, and a theory of how to transform 
a specification style into another is being developed. 

3. Executability of LOTOS Specifications and LOTOS Tools 
Because of the fact that LOTOS is (partially) executable, a specification is effectively a "fast pro- 
totype" of the entity specified, thus it is possible to exercise a specification of a complex system 
at the design stage.  This means that design errors can be found much earlier in the software 
development cycle than with other techniques. 
The two LOTOS interpreters in existence today are described in [L][GHL][WD]. 

4. Verification in LOTOS 
It is possible to carry out in LOTOS proofs such as the ones found in [M][H], and the proof 
methods are similar to those found in these references.   The best developed proof techniques 
involve the concept of "bisimulation" [P][B1]. Proof methods based on the concepts of "traces" 
and "refusal sets" [H] are also being considered. Unfortunately however, because of the presence 
of internal actions, some of the proof methods developed for CSP, such as fixpoint induction 
methods, do not seem to be applicable to LOTOS. 
An important open problem is to find a unified verification framework for both the control and 
the data part 
Of course, the challenging aspect is to be able to prove properties of systems of realistic size. To 
this end, computer-assisted verification tools are being envisioned. 

5. A Theory of Implementation and Testing 
A rich formal theory of implementation and testing is being developed around LOTOS [BB][B]. 
This means that the relation "I is an implementation of S" is formally defined for two expressions 
I and S. This formalization is given by the reduction relation, where I reduces S if: i) I can only 
execute actions that S can execute and: ii) I can only refuse actions that can be refused by S. 
Intuitively, I can be more deterministic than S, and can contain fewer options. In other words, in 
LOTOS the abstraction of a specification with respect to the implementation is represented by a 
higher level of nondeterminism. 
Similarly, the relation A and B are testing equivalent [DH] has been formally defined as: A 
reduces B and B reduces A. Roughly speaking, two specifications are testing equivalent if their 
externally observable behaviors are identical. This corresponds to the failure equivalence of 
Hoare [H]. By using these concepts, it is possible to derive implementations and test cases in a 
formal way from a LOTOS specification. 
It must be observed, however, that so far these concepts have been fully developed for restricted 
forms of the language only. 

6. LOTOS in Practice 
Specifications of real-life systems of thousands of lines have been written in LOTOS. Some of 
these are on their way towards becoming part of ISO International Standards.   Some examples 
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are: several OSI layers (Network, Transport, Session), specifications of telephone systems [FLS], 
etc. (in addition of course to all best known "textbook" examples such as the Alternating Bit Pro- 
tocol, the Dining Philosopher's problem, etc.). Several such examples are included in [VVD]. 
The language is starting to be used in industrial environments, and the results appear to be quite 
promising. 

7. A LOTOS Example 
The following example, adapted from [BB], is a LOTOS specification for an entity which is able 
to accept three natural numbers in any order and stops after printing the largest of them. 

01 specification Max3[inl,in2,in3,out] : noexit 

02 type integer is 
03 sorts int 
04 opns 
05 zero          :                  -> int 
06 succ          :         int   -> int 
07 largest      :      int4nt   -> int 
08 eqns forall X,Y: int ofsort int 
09 largest ( zero , X   ) =   X; 
10 largest (   X , zero ) =   X; 
11 largest ( succ(X) , succ(Y) ) = succ ( largest(X,Y) ); 
12 endtype 

13 behavior 
14 hide mid in 
15 ( 
16 Max2 [inl,in2,mid] 
17 |[mid]| 
18 Max2 [mid,in3,out] 
19 ) 

20 where 
21 process Max2 [vall,val2,max] : noexit := 
22 (   vall?X:int; exit(X, any int) 
23 II! 
24 val2?Y:int; exit(any int, Y) 
25 ) 
26 » accept V: int, W: int in 
27 max!largest(V,W); stop 
28 endproc 
29 endspec 

The specification is to be read as follows: 
Lines 2 to 12 define the type integer with its associated operation largest. This is done according 
to the semantics of [EM]. Of course, the standard LOTOS library contains all these definitions, 
so normally the user will include them by invoking the library. 
Lines 14 to 19 describe the top structure of the specification, which consists of two instantiations 
of process Max2. The latter is capable of finding the largest of two numbers, read in any order 
from gates vail and val2, and outputting it on gate max. As the two copies of Max2 are instan- 
tiated, their gates are renamed respectively inl, in2, mid, and mid, in3, out, resulting in the fact 
that the output value computed by one copy is fed to the other over gate mid.  Note that mid is 
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hidden, because it is meant for internal communication between the two instances of Max! only. 
Lines 21 to 28 describe process Max2. It allows interleaving between the input actions on gates 
vail and val2.   Both values input are then forwarded to the action on line 27, which calculates 
the largest of them and inputs it. 
Lines 22 to 27 could also be written as follows: 

vall?X:int; val2?Y; max!largest(X,Y); stop 
D 

val2?Y:int; vall?X; max!largest(X,Y); stop 

and the equivalence between the two specifications could be proved easily by using the simplest 
rules of bisimulation. 
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INTRODUCTION 
One of the most difficult problems in the design and verification of distributed systems is the devel- 
opment of an appropriate notion of abstraction. In the last few years, the process algebra approaches 
of Milner[l], Hennessy[2-3], DeNicola[4-5], Bergstra and Klop[6], and Brookes, Hoare, and Roscoe[7] 
have made substantial progress in this area. This paper explores the use of many concepts from the 
theory of process algebras within the more traditional framework of abstract data types [8-9]. 

Distributed data types (DDTs) arise naturally in a variety of situations in which a distributed sys- 
tem can be viewed a single object. The distributed nature of such objects manifests itself through 
spontaneous, internal operations which may alter the object's externally visible behavior. Formally, 
we define a DDT as a heterogeneous algebra supplemented by such internal operations. In our 
approach, a distributed system is first specified as a single DDT, then modeled as a family of dis- 
tributed objects (which are in turn specified as DDTs) and processes which act upon these objects. 
Verification consists of showing that the model correctly implements the specification by offering 
only behaviors that are more deterministic than those allowed by the specification. 

This procedure may be repeated for each distributed data type used in the model, allowing stepwise 
refinement of the specification to any level of detail. At each step, the complexity of analysis (e.g., 
state space explosion) is controlled through elimination of internal operations which do not alter the 
observable behavior of the object. 

DISTRD3UTED DATA TYPES 
We first extend the traditional definition of a signature [8-9] to accommodate the notion of objects 
which may alter their behavior through spontaneous internal operations. 

Definition 1 An S-sorted distributed signature E =< S,F,I> consists of 
• a set S of sort names. 
• a family Fw<t of sets of external operation names, where w € S* and s € S. For convenience, 
/ € Fw,, is depicted as / : «i X ... X sn-*s where w = *i,..., sn, and F is taken to be U„,,.FW,,. 

• a family I, of sets of internal operation names, where s € S.  Again, t € I, is depicted as 
t: s—*s and I is taken to be U,It. 

Example 1 The signature of a distributed, bounded queue of length 3 may be given as E =< S, F, I > 
where S = {queue, item} and 

F = { nq: —♦ queue, enq: queue X item   —» queue, 
deq: queue   —► queue, next: queue               —*   item} 

J = {      n: queue    —*   queue, T2'. queue                —*    queue} 

In what follows, it will be useful to compare signatures which differ only in their internal operations. 

Definition 2 Let E =< S, F, I > and E' =< S', F', V > be S and S' distributed signatures. Then 
E C E' (read E is contained by E') if S = S', F = F', and I, C I't V« € S. 

A particular DDT is specified as a heterogeneous E-algebra supplemented with spontaneous in- 
ternal operations. As in the process algebra approach [1-7], interactions between a DDT and its 
environment are synchronous in that a DDT may refuse to participate in an inappropriate operation. 
Refusal of an operation is indicated by 0, and we adopt the convention that refusals propagate, i.e., 
f{ai,..., a„) = 0 if Oi = 0 for any 1 < t < n. 
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Definition S Let S =< S, F,I > be an S-sorted distributed signature. Then a E-distributed data 
type (E-DDT) A consists of: 

• a set A, for each s € S (called the carrier of A of sort s). 
• an external function fA : Atl x ... x A..-+A, U {0} for each / 6 Fa,t where «/ = slt..., *„. 
• an inferno/ function iA : A,->A, U {0} for each t € I,. 

Example 2 Let ITEM be a predefined set of objects, u € ITEM, and x,y,z€ ITEMu{X}, where 
A is a special symbol not in ITEM representing the absence of an item. A particular DDT, A, for the 
signature of Example 1 then consists of the carriers Aqume = {< x,y,z >\x,y,z e ITEMU {A}}, 
Aitem = ITEM with operations 

n^*() = <A,A,A> 
enq* (< x, y, * >, u) = < «, y, * > if x = X, 2> otherwise 

deq*(< x, y, z >) = < x, y, A > *'/ z ± A, 0 otAeruns« 
next* (< x, y, * >) = * if z^X,® otherwise 

*iA (< x, y, * >) = < A, x,z > if x ^ A and y = A, 0 otherwise 
V*(<x,y,*>) = <x,A,y> if y ^ X andz = X, <Z> otherwise 

BEHAVIORS 
As described earlier, verification of a distributed system consists of showing that the DDT generated 
by a model of the system correctly implements the DDT given as the specification. To define this 
more rigorously, we introduce the concept of a behavior. 

Definition 4 Let X = {xi,..., x„} be a set and let XQ = X U {0}. Then 
1. If x € X0 then {x} is a behavior of X with root{{x}) = x and a«cc({x}) =0. 
2.If x € XQ and ßi,...,ßn are (0 < n < oo) distinct behaviors of X, then {x,ßi,...,ßn} is a 

behavior of X with root({x,ßi,...,ßn}) = x and aucc({x,ßx ßn}) = {ßx ßn}- 

Example S If X = {a, b, e, d} then {0}, {a}, {a, {b}}, and {0, {a, {0}}, {b}} are behaviors of X, 
while { }, {a, 6}, and {a, {0, &}} are not behaviors of X. 

Behaviors are simply trees in which some of the nodes may be a refusal, 0, and define how the result 
of an operation may change over time. For example, {0, {false}, {true}} (read refusal, eventually 
false or true), describes the behavior of an operation which is initially refused but must eventually 
return either the value false or true. In this example, the refusal is referred to as a transient behavior 
while false and true are referred to as stable behaviors. Behaviors may also be finite or infinite. In 
what follows, we will consider only finite behaviors. 

Definition 5 Let ß be a behavior of X. Then ß is stable if succ{ß) = 0 and transient if suec{ß) ^ 0. 
ß is finite if ß is stable or if V6 € succ(ß), b is finite. 

A behavior ß implements a behavior ß1 if it is more deterministic, i.e., if every stable behavior of ß 
is a stable behavior of ß' and no transient behavior of ß contradicts ß'. 

Definition 6 Let ß and ß' be finite behaviors of X. Then ß C ß' (read ß implements ß') if any of 
the following are true 

1. succ(ß) = succ{ß') = 0 and root{ß) = root{ß') 
2. succlß) # 0 and root(ß) = root(ß') and V6 € succ{ß), bQß' 
3. succ{ß) ^ 0 and root{ß) = 0 and V6 € succ(^), 6 C £' 
4.36' € succ(ß') such that 0 C 6'. 

Implementation is a preorder (a relation which is reflexive and transitive) over behaviors and natu- 
rally induces an equivalence relation (the kernel of C) over behaviors [3j. Two behaviors are said 
to be equivalent if they implement each other. 
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Definition 7 Let ß and ß' be finite behaviors of X. Then ß ~ ß' (read ß is equivalent to ß') if 
ßQß' andßSß'. 

Example 4 {a} ~ {a},    {6}E{a,{6}},    {a}g{a,{6}},    {0,{a}}~{a},    {a, {a, {6}}} ~ {a, {6}}, 
{a, {0, {a}, {6}}, {6}} ~ {a, {a}, {6}},    {a, {0, {a}, {6}}, {6}} g {a, {a}, {6, {a}}} 

IMPLEMENTATIONS OP DDTs 
In one sense, an element of a carrier of a DDT possesses not only the capabilities explicitly defined for 
it, but also those of all objects into which it may evolve through its internal operations. Accordingly, 
we associate each object with the behavior consisting of itself and those objects into which it may 
evolve, formally given in Definition 8 as the behavior returned by the r operator. Note that such 
behaviors contain no refusals. If every behavior generated by r for a DDT is finite (stable), then 
the DDT is said to be finite (stable). 

Definition 8 Let A be a E =< S,F,I> DDT and let a € A,. Then 

ri*(a) = {a} U {ri*(^(a)) | % € 7. AiA(a) * 0} 

If rf(a) is finite (stable), o is finite (stable). If r*{a) is finite (stable) Va € A„ A is said to be finite 
(stable) for sort a. If A is finite (stable) Vs € S, A is said to be finite (stable). 

Example 5 In the DDT of Example 2, 

*£«..(< *, A, A >)   « {< x, A, A >} U {*£«„,(< A, x, A >)} 
= {<x,A,A>} U {{<A,x,A>} U {*£„,«(< A, A, x>)}} 
= {< x,A,A >} U { {< A,i,A >} U { {< A,A,x >} } } 
- {<x,A,A>} U {{<A,x,A>i{<A,A,s>}}} 
- {<x,A,A>,{<A,x,A>,{<A,A,x>}}}. 

This DDT is finite but not stable. 

Applying an operation to behaviors also results in a behavior, as described in Definition 9. Note 
that behaviors obtained as the result of an operation may contain refusals. 

Definition 9 Let A be a finite E =< S, F, I > DDT, / : «x x ... x a„-»a € F, and ßi be behaviors 
of A,t, 1 < t < n, such that ft = {&,-, ru,... r<,„,.}. Then 

fA(ßi ßn) = {fA(bi,...,bn)}u{fA(ß1 Ä-i.r«,Ä+x /?»)|l<»<*,l</<*} 

Example 6 Consider the distributed queue DDT of Examples 2 and 5. 

nexf4(*£«,,«(< x, A, A >))   = next*^ x,A,A >,{< A,x,A >,{< A,A,x >}}}) 
= {nexT*(< x, A, A >)} U {nextA({< A, x, A >, {< A, A, x >}}) } 
= {0} U { {nexf*(< A,x,A >)} U {nextA({< A,A,x >}) } } 
= {0} U { {0} U { {nex^(< A,A,x >)} } } 
= {0} U { {0} U { {x} } } 
= {0}u{{0,{x}}} 
= {0,{0,{x}}} 

Example 7 If ßi = {a, {6}, {c}} and ßi = {d, {e}}, then (omitting the intermediate steps) 

/(ft.A) = {/(«,«*), {/M,{/(M)H. {/M).{/('.«)}}> {/(a,«),{/(M)},{/(e,e)}}} 

Traditionally, one data type is said to be implemented by another if there exists a homomorphism 
from the implementation to the specification. We extend this notion to DDTs by defining a homo- 
morphism from behaviors of the implementation to behaviors of the specification. 

Definition 10 Let A be a finite E^-DDT and B be a finite EB-DDT such that Efl C EA. Then an 
implementation homomorphism $ : A—>B is a family of functions < $, : A„—*B, >,es such that 
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for all/: 3i X ... X sn-*s € F and all < o#l a.„ > € Atl X...Xi4.„ 

*.(/A(^(«.») tit(o..)))E/B('f»(*.i(«.i)),-.*f.(*..(0)) 
where *.(0) = 0 V« € S. If * preserves ~ rather than C, then * is said to be an equivalence 
homomorphism. 

The existence of an implementation homomorphism guarantees that an implementation can exhibit 
only behaviors which are more deterministic than the behaviors allowed by the specification. If 
A implements B, then A may be safely substituted for B in any larger context. An equivalence 
homomorphism guarantees that an implementation can exhibit all the behaviors allowed by the 
specification, and vice-versa. If A is equivalent to B, then A may be substituted for B and B may 
be substituted for A in any larger context. 

Example 8 Let A be the distributed queue DDT of Examples 1 and 2. Let B be a stable queue of 
length 3 (i.e., a DDT with no internal operations) such that B has the same signature as A except that 
/,„«.« = 0- Let the carriers of B be Bqaeu. = {w | u; € ITEM*, | u; | < 3} and BiUm = ITEM, and 
the operations of B be 

m»()  -   A 
enq3 {w,u)   =   ua>   if 1w | < 3, 0 otherwise 

deqf(w)    —    w'    if to = v/n, 0 otherwise 
next5 (u>)    =     u     if w = to'u, 0 otherwise 

where A is the empty string, w € ITEM" such that \w\ < 3, and u € ITEM. Then *,„„,.(< x, y,z>) = xyz 
and $««»(«) = « is an equivalence homomorphism from A to B. For example, making use of the 
results of Example 6 we have 

*«em(nea**(r,JU„(< x, A, A >)))    =    *«em({0, {0.{*}») 
-    {0,{<2>.{*}}} 
~ {*} 
= {nexiP{x)} 
= nex^dx}) 
= next3 {T*[X)) 

= nextB{Tfueue{^,um,(<x,X,X>))) 

Similar results hold for all possible operations and arguments, establishing that a distributed queue 
of length 3 is equivalent to a stable queue of length 3. In verifying any larger system incorporating 
a distributed queue, this allows us to substitute the stable specification to simplify the analysis. 
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Abstract: In this paper the problem of sequential Fortran restructuring is considered. The 
need of reusing the large amount of scientific programs written in sequential Fortran captured the 
attention of various computer scientists since the arrival of parallel computers. This problem needs a 
good abstract approach in order to provide an.intelligent software package which can automatically 
execute the task.. In this paper the case of subroutine dependences is considered. A formal 
mathematical model based on the discrete event system theory is first introduced. Futher results 
are obtained bSased on this model. The recurrence property of the model suggested to approach the 
implementation through a logic programming technique. An expert system shell was used to easy the 
implementation. Practical results and a demonstration package resulted. 

1 .INTRODUCTION 

The increasing interest in parallel computers and their capabilities to speed-up the execution of 
computational intensive scientific programs generated an accrued research to support programmers 
with more enhanced programming tools. 

Scientific programming characterized by a high-level of floating-point computation usually uses 
Fortran programs to implement a requested algorithm A lot of already available sequential code must 
be reconsidered and rewritten, or in other words restructured [1], in order to be executed in a parallel 
environment. 

There are commonly available computers [1], [2], [5] which vectorize the code written in 
standard Fortran. The compiler attempts to convert the innermost loops to vector operations. 

Even though great progress has been made in automatic code restructuring, the only automatic 
system available to date is limited to individual loops [1]. The analysis of parallelism in independent 
nested DO loops has been also reported [8]. Parallelism at a larger granularity must be explicitly 
specified by the programmer [1]. 

In this respect, programming environments that could help a programmer to develop explicitly 
parallel programs are or have been under research [1], [3] for specific architectures. 

In order to efficiently use a parallel multiprocessor system it is necessary not only to achieve the 
fine-grain parallelism, through the DO loop vectorization, but also the coarse-grain parallelism such as 
subroutine calls. 

However, this subject remained untouched because of the complexity of the analysis process for 
the parallelism detection. .    . 

When affirming this we have in our mind the case of multiple levels of subroutine calls which is 
obvious in any reasonable and well structured FORTRAN program. As an enforcement of the last 
statement we mention the Cray-1 FORTRAN compiler which stops the vectorization when a 
subroutine call is encountered [1]. 

In order to achieve this fine analysis the compiler or other software that can do this, has to be 
provided with reasoning capabilities [1]. This means unification, reasoning mechanism, forward 
chaining, backtracking a.s.o. 

The development of logic programming techniques provides this environment which allows the 
computer to deal with problems requiring intelligence. A practical implementation of this piece of 
software will be finally in the form of an expert system. 

Expert system shells that can interface external libraries in Fortran are excellent environments 
that provide a lot of facilities to accomplish the task of parallelizing sequential FORTRAN code. 
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The blackboard of an expert system shell provides the storage elements which help to solve this 
problem dynamically. On the other hand, the powerful reasoning capabilities of the expert system 
provide other necessary complex mechanisms for obtaining the subroutine dependences. 

An example a Fortran program containing an arbitrary number of subroutines is processed by 
the expert system. 

2. PRELIMINARIES 

In order to provide a mathematical approach to the detection of subroutine dependences the 
following notations will be introduced: 

- the set of input variables: U ={ Uk I fk real and integer variables,strings, arrays,etc, k 
N} 

N) 
- the set of output variables: 7= {yk ■ 7k real and integer variables,strings, arrays.etc, k 

- the set of commands: C={c \a\l\:ifQgoto 12 else go to I3, fi 
V li: (x 1^ 2 x n) := ( U. t 2 t n  ),go to 12 (n>l)l 

where li are labels ll= end, l2=l3,e a quantifier free formula, and fi is the finish if 
- the set of elementary " subprograms" S 0 ={sk ' sk elementary functions or 

subroutines},where an elementary function or subroutine is considered that function or subroutine 
which does not call any subprogram. 

- the set of all functions or subroutines 5  S0 

Under this consideration a subroutine is defined as follows: 

s : U x C xP —> Y 

The dependence relations are introduced as follows: 

Definition 1: Consider i<j in a lexicographical order, the subroutine sj(ui,...,unj,yi,-,ymj) is 
said to be dependent on subroutine si( ui,...,uni,yi ymj) if one of the following conditions 
hold: 

i) U i n U j = 0 
Ü)U j n Y\ = 0 
iii) Y i n Y j= 0 i,j e { l,...p} where p is the total number of subroutines, ni, 

nj,mi,mjs NandC/ i,Fi, U j, Y] are the sets ofinput and output variables of subroutines iandj 
respectively. 

3. A MATHEMATICAL MODEL OF SUBROUTINE DEPENDENCES 

As defined before a subroutine can be viewed as a set of tasks which receives input variables 
and under some commands transforms these variables into output variables. This mapping can 
further be written as an explicit relation if an event-graph is used to describe the sequence of 
transformations which occur during the subroutine execution. These transformations will be called 
activities and their set will be denoted by A.. It has to be noted that a subroutine can also be viewed 
as an activity. The input and output variables are viewed as resources (R the set of all resources 
used in the program) for the subroutine execution. A program is then an acyclic oriented graph G 
which is assumed to be connected. The set of the arcs of the graph G is denoted by T. There is 
always a starting activity (node) as (r) and a final one af (r). 

Each arc (i,j) e T of the graph G is weighted by an integer Qj > 1 called the displacement. 
Each activity a{ will be executed following a certain path in the graph and consequently in an order 
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given by the precedence number xi. If (j,i) G then xi=xj+ tjj. A resource precedence number ur will 
denote the moment the resource is used for the first time in the program. If i is the first activity for 
resource r, then xi> ur- 

Consider now P - (i)the set of predecessors of activity i and R ° (i) be the set of resources such 
that as(r) = i; then 

aie A xi= max (max (xj + tij), max ur) (1) 
j€   P-(i)     re R°(i) 

Let A be the nxn weighted incidence matrix of (A, T ) defined by: A ij = tij if (i,j) T and 
Aij=-~ otherwise, where n= Card( A ). Similarly, let B be an rxn matrix, where r=Card (R) 
defined by bri= 0 if as (r) =i and bri= -°° otherwise. 

Using the above introduced matrices and the minmax algebra the following results can be 
obtained: 

• The equation (1) can be written as 

X=  XA®   UB (2) 
where X = (xi,x2,..., xn), U= (ui,u2,... ,un ) 
Letting yr denoting the precedence number of the activity where the resource is used for the 

last time, and cir= ti if af(r)=i for some r and ch- =-<*> otherwise, a second relation is obtained: 

Y=  XC (3) 

• Theorem 1 : For a given U the equation X = XA ® UB has a unique solution : X= UBA* 
where A*= (E ® A ® A2 ® A n_1), E is the identity matrix defined as eu=0 and eij= -°° for i=j, 
andA^A0"1. 

• Theorem 2:A* contains as entries the maximal weights of paths between two nodes and 
provides in this way the precedence numbers reflecting the activity dependences. 

• Theorem 3 :If the critical graph of A* has only one path then there is a total dependence 
among the activities (subroutines) and their execution can only be sequential. 

• Theorem 4 : if the critical graph of A* has K connected components, then there are K 
subroutines which can be executed in parallel. 

• The previous results can be extended to the DO loop case. A DO loop can be seen as a 
part of a program which repeatedly performs the same activities over the same set of input and 
output variables. Using the index variable n X(n) will be the vector of the activities in the n-th run 
of the loop, and correspondingly U(n) will be the resource vector in the same run.This leads to the 
following model: U(n)=Y(n-l)K where K is an rxr matrix such that Krs =0 for r=s and Krr= the 
displacement between af(r) and ai(r). Using these observations and the previous results one can write 

Y(n)=Y(n-l) KBA*C (4) 
which is a forward dynamic programming equation. 

4. A LOGIC PROGRAMMING IMPLEMENTATION 

The recurrence of the previous model suggests a logic programming implementation. 
Using  the model given by (1) & (3) , the  results of theorem 1- 4 , and introducing the 

following recursive functions: 
• find_calls( x„first (1))= find_caUs(x„find_inner_sub( x, find_calls(x,first(new_l)))) 

• find_inner_sub(x,l)= find_inner_sub( x, find_calls( x,rest (1)) 
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where first (1) and rest (1) are the head and the tau of the list 1, and newj is a working list 
containing at a certain moment the names of subroutines under processing 

• norelation(): list( ai( xi,ui), ai(yi»      list(si) 
• indxi (u ai, callki)        H,wnere Uis a strinS of procedure names stored as a list 

xi being defined by indxiO={ Ul, li2 } and lil being the Ust of dependent subroutines,and 
li2 being the list of independent ones. 

With the above introduced recursive functions the main result can be stated as follows: 
Proposition: For every list 1 of activities ai i e N, if the activities ai are subroutines and if 1 is 

a nonempty list, the following recursive function „„„„ 
indxi (x , first(l))= xi (x, rest(xi (norelation (yi,ly),first(rest(l)))))) 

will build the list of all independent subroutines of the analyzed Fortran program. 

An expert system shell has been used for the implementation of the above abstract mechanism for 
the detection of the subroutine dependences. An expert system has been obtained. The tasks 
accomplished by the expert system are : 1) the generation of an abstract Fortran file 2) 
the generation of input /output variable,and command lists, 3) the generation of all Fortran 
statements (ai), 4) The generation of the corresponding xi,ui,yi,lists, 5) the dependency check 6) the 
generation of the lists of dependent and independent subroutines , 7) recursively repeats (6), 8) the 
displaying of the final lists. . ...„   .     . 

The above implementation has been checked an examples of various degrees of diiriculty. in a 
demonstration package a Fortran program with three levels of calls is considered for a dependency 
check. The expert system was implemented on a Vax and Compaq 386 environment. 

5. CONCLUSIONS 

The approach developed in this paper for detecting the subroutine dependences is based on a 
discrete event system model. The implementation has been accomplished by using a logic 
programming technique. To facilitate the implementation an expert system shell has been used. It 
provided the appropriate mechanism for reasoning, recreation, communication, and dynamic tracking 
of activities. It is a powerful and productive tool for developing software tasks previously 
implemented in compilers. 
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Abstract 
The use of algebraic technique* in the development of software enable« systems to be built which have 

a precise formal foundation. Such formal methods[1] can help considerably in reducing the susceptibility 
to errors of interpretation and consistency of many of the current ad hoc procedures used in system 
design. This is of particular importance for building large and reliable systems. Furthermore, the use 
of formal techniques enables rigorous calculations of various properties to be made on a system like, for 
example, absence of deadlock. 

In this paper we are concerned with how systems expressed in such a manner can be used to system- 
atically generate specifications which may, in principle, be performed without any human intervention^]. 
In particular, we deal with the type of situation where the specification of an unknown system component 
is derived from two given specifications. The pre-requisites for solution to the problem we consider are 
that the known specifications are formally expressed in terms of states and that the component to be 
synthesised interacts with them in some predefined way. 

1    Notation 
We are dealing with finite communicating transition systems as described in [3,4] in which a, ß, y, p ... a, 
ß,yp... denote action«, r is a special action called the invisible action and Pi, Pi, q, r • ■ ■ are states, e 
denotes an empty sequence of actions. A direct p derivation between states is a relation between two states 
and and an action, written pi —»* p», in which pi is the source and pj the destination. Ä(p) is the set of 
all states reachable from pr, A(p) (called the alphabet of p) is the set of all actions which are possible for all 
p* € £(p). Afp is a machine which can exist in state p. For conciseness we write pi -** pj —♦** ps to mean 
(p! -+'' pj) A (pj -** ps). A set of relations sharing the same source is written as a behaviour equation: 
Px -4= api+ßpi means that (pi -»" pj)A(pi —* p») and that there are no other relations having pi as a source. 
We express the ability of two transition systems to communicate by use of complementary actions such as p 
and AT and the parallel composition operator: |. If p = "ppf and r = pr1 then (p|r) = 7*(p'|r)+ji(p|r') + T(p'|r/) 
([3, Expansion Theorem]). That is, if p can do an action and r can do the complementary action, then the 
composition of the two can do either of these (in which case only one of the machines changes state) or it can 
perform the invisible r action (in which case both machines change state). Given one machine we con derive 
another by 'hiding': that is, removing all transitions in which the action belongs to a set A; the r action 
may not appear in such a set. In the previous example if we define a set A = {p} then (p|r)\A = r(p'|r'). 
By convention hiding an action implies hiding its complementary action. We define p =>** p* to be a relation 
between two states p and pf and action p (^ r) if and only if 

*-»*»-'»...-'   ft-^m  r*rP*^r-"-»V 
0 or more TS       exactly one p    0 or more rs 

Replacing p by r in the above figure gives a representation of the definition of the relation p ^* pf (where e 
is the null string), which indicates that two states are connected by a sequence of zero or more r actions. For 
conciseness we use p —** (read as 'p can do a p') to mean 3p* such that p —♦* p* (but we are not interested 
in what p* is). Observational equivalence is defined in such a way that two states p and q are observationally 
equivalent, written p » g, if and only if for every i) p if p =>'* p* then there exists a qf such that q =>M qf and 
p1« q1 and ii) if q =>M q1 then there exists a pf such that p=>ß pt and p1as q1. Weak determinacy is defined 
in such a way that if p =>M p' and p =>M p" then p' w p". 
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2 Interface Equation   
An interface ejuaiionis an expression of the form {p\X)\A « q where A(p) n A(«) C {r}, A(p) HA = 0 and 
A(q) n (A U Ä) = 0. (0 denotes the empty set.) We say that r is a solntion to the equation (p\X)\A » q iff 
r satisfies (p|r)\A * g and A(r) n A(p) C {r}. In this paper we further assume that no pair of states q> and 
q" € R(q) are observationally equivalent. This slightly simplifies the exposition and significantly reduces 
problems in implementing the algorithm. Since it is straightforward to compute from a machine Af not 
having this property a new machine M' which has this property, the assumption does not impose significant 
constraints on the applicability of the theory which we develop. 

The interface equation may be thought of as being approximately the reverse of the expansion theorem: 
whereas the expansion theorem composes two given machines to produce an unknown third we are attempting 
to compute the unknown machine which, when composed with a second, is observationally equivalent to a 
given third. 

3 Methods of Solution 
A basic procedure for solving the interface equation is a discarding algorithm very similar to that described 
in [51. In this procedure we construct a set ^, each component K of which is an I-compleie (defined later) 
set of tuples of the form (pf, A where p7 and q> are states of the machines Mv and Mr We then compute, 
for every pair (K,K>) the relations (defined later) K -*»° K\ K ^c K' and K -' K'. We then scan 
through the c- nponents of i/> and discard any component K that is not O-complete (defined later) with 
respect to i>. We iterate this scan until either no set remains that fails the O-completeness check (in which 
case we have found a solution) or none of the sets of i> contains the tuple (p, q) (in which case no solution 
exists). The solution is expressed by creating one state r< of the solution for each K in i>. Derivations 
between r-states are readily associated with derivations between .ff-sets thus: if there is a -*r between two 
K sets there is a -»r between the corresponding r states; if there is a — "-0 or ->*c between two K sets 
there is a — * between the corresponding r states. The procedure of forming I-complete sets entails (in the 
most basic form of the algorithm) the formation of all possible valid unions of basic sets of tuples called BIr 

sets. Each of these BIr sets is I-complete, and the formation of valid unions consists of forming only those 
unions which retain this /-completeness condition. 

4 Key steps in the theory- 
Relations between tuples:   Let us first introduce relations -+»1 and — r'p between tuples, where 
/i € A(p) U A(2) - {r}: define (p*. q1) -+»1 (p",q") iff p* -" p" and «* =>" q" and define(pf, q>) ^Wjf) 
iff p> -*? p» and q1 =►* q". We then introduce set« of tuples I„,z and IT>P'. define Ifhi(p',q',p') = 
WWW,*) -*'J #'.«")} *** J'r,i»(p',«',p") = WWW,*) -+T'P (P",«")}. We also need two 
further relation» between tuples -»* and -*c: define (pW) -*° (p",«") iff p1 = p" and q> =►" q" and 
» 6 A(«) - A(p) and p ± n define (p1, «*) -*c (p",«") iff P* -+* p" and q1 =>* q" (where «is the null string) 
and /* € A and p^r.. 

BIT sets: A key step in developing efficient algorithms is the introduction of Bir sets, which are defined in 
terms of the preceding sets, as follows. Define B&V. «0 (*' 6 {1,2.. •}) by the following: {pf, «*) € ££ (p\ 4)', 
if(p".«") € B&V-«') and (/*/(?",«", p"') * 0) or (Jr,p(p", q",p"') * 0) then (p",q") is any one of the 
tuples in I^i n IT,p (if both are non-empty) or any tuple in the non-empty set if only one of them is empty. 
If q is not weakly'determinate then for a given (pf, «*) there may be several BiT sets depending on which of 
the tuples is selected; the superscript (*) is used to distinguish between these sets. 

/-completeness: /-completeness is a property of a set K of tuples, K being a union of Btr sets. Such a 
set is /-complete iff V(j/, q1) € K, if pf — (/* i A and p £ T) then q> =>*. 

5 Relations between sets 
We define five relations between sets: ^*°, ^*c, ->r, =**° and =>*c. Define K -+*° K" iffV(p,,«0 € 
K3(p",q") 6 K' s.t. (p',«') ^*-° (p",q").  Define K -*° K' iff ((3(p', «*) € K) and (3(p",«") € K") 
s.t. (pV) -*C (p",q")) and (V(p\g') € ÜT if p* -*" p" with JI € A then 3(p",q") 6 Ä" *.*• (pV) —* 
(p". «"))• Define K =>"'° ÜT" iff there exists a sequence of K such that 

K-^rKx^
TK-1---^

TKi ^f, ^4 ,^r *»••-< '' 
sero or more TS exactly one /t, O      zero or more TS 
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Similar definitions axe made fot p, C and r derivations. 

O-completeness A set K is said to be O-complete with xespect to a set S if for all (p*, g7) € K if p € A(g) 
and g* -»" g" then there exists a sequence of sets JT< and tuples (ft,g<) (where each (p,-, g<) € #<) such that 

7^ft   =*"'   P2   =>*•  •••p4=>JrP5   =►"•  •••=►"*?' 

and (p1, g") € ÜT' where, if p = r then JT = € and Y = e, otherwise eiifcer X = p and Y = e or X = e and 
Y = p,0 Notice that /-completeness of a set is not influenced by other sets; in contrast, O-completeness, 
while still being a property of a set, is influenced by that set's relations with other sets. 

6 Key steps in algorithm development 
The practical problem of this basic approach its combinatorial complexity, which causes the number of sets 
in i> to be very large. This complexity arises (i) the formation of all possible valid unions of BjT sets, and 
(«) the relaxation of weak determinacy, which considerably increases the number of Bir sets[6]. 

We have attempted to reduce the computational requirements in two ways. First we have refined the 
basic procedure described above by introducing the concept of minimal unions [7]. This concept considerably 
reduces the number of sets that we have to deal with in performing the O-completeness tests. Secondly, we 
have attempted a constructive approach[8] instead of a discarding approach. 

The minimal-union approach to improving the basic discarding algorithm is to try to avoid forming unions 
which are not essential to a solution. We can do this by first considering image» of derivations between sets. 
For example, the image of a T derivation from K to K' is the set V C K' given by {(p",g")l(p">«") € 
K' A (3(p", g*) € K s.t. qf =*•* where «is the null string)}. Similar definitions are made for p, X and p, O 
derivations. A minimal union from K containing K' is defined to be the union of only those B/T(p', g*) sets 
with (p*. g1) 6 K' such that Bir{jf, a?) C K. We have found that it is sufficient to consider only minimal 
unions of images oi p,C, p,0 and r derivations in computing solutions, allowing a considerable reduction 
in computing requirements in some examples. 

In the constructive approach we delay the steps which generate the large number of sets as long as 
possible. Instead of performing the single linear sequence of forming 5/r sets, I complete sets, unions, 
and then carrying out the O-completeness tests, we carry out an iterative procedure. In this iterative 
procedure we do not immediately set up /-complete sets but set up what we call /-complete sets (which at 
any stage we can expand to produce /-complete sets). We then test these sets for a more complicated for 
of O-completeness which we term O-completeness. If this test fails on some set K, we then derive from the 
offending set more /-complete sets by a heuristic process outlined in the next section. In this way we hope 
to avoid the exponential explosion of states when attempting to solve real problems. 

7 Constructive algorithm concepts 
In the constructive algorithm as well as eliminating unnecessary generation of BiT sets, or at least postponing 
*uch generation to a late stage, we pre-process the g machine into a minimum action representation. This 
produces a new machine observationally equivalent to the original g but with new and useful properties. 
The minimum action representation of a machine M is derived from the original machine by removing all 
derivations g -»'* g* which are not observationally essential A derivation of the form g —»^ qf (where 
p 6 A(g) - {r})is observationally essential iff Vg" s.t. g" 56 g then g ^' g" =>" g' is false and Vg" s.t. 
gf 56 g" then g =»** g" =»* is false. A similar definition is made for derivations of the form g -*T g\ 
Analagons definitions about the minimum paths between tuples can be made. By analysing the reachability 
of the p machine by actions not in A and by comparing minimum paths of the p machine with minimum 
paths between (p,g) tuples, we compute a relation Us between tuples. (The lengthy definitions of Ks, 
/-completeness and O-completeness have been omitted here.) We then construct the transitive closure of 
Us and examine the set of equivalence classes given by this relation. By construction each of these sets 
satisfies our definition of/-completeness. We then check each of these sets for Ö-completeness. In contrast 
to the discarding algorithm, we do not discard a set which fails. Instead, we replace the offending set K by 
two sets, one derived from K by deletion of some tuple (p*, g*) and the other derived from K by retention 
of (p*, g*) and deletion of all other tuples beginning with p*. This process is known as tuple extraction. In 
general the resulting sets are not /-complete, and so we have to refine the sets (by tuple deletion) until 
they are /-complete.   Deletion of tuples also implies that the Hs relations have to be recomputed.   We 
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iterate round the cycle of I-completness checking, O-completeness checking and tuple extraction, until the 
(^•completeness condition is satisfied. 

The process of tuple extraction is a heuristic one. That is, we have worked out rules for guessing which 
choice of tuple is most likely to lead quickly to a solution. The algorithm we use would eventually search 
through all tuples, though this would take far too long in general. Consequently appropriate selection of 
tuples is of crucial importance in this step. 

8 Computation times 
Using a discarding algorithm, an M, with two states and a Mq with three states can be solved in a few 
seconds on a VAX785. An example Mr with 5 states and an Mq with 20 states but requiring no unions was 
on the limits of solubility (1 CPU-day). We have not yet explored the computation time of the constructive 
algorithm, but we expect the 5/20 example to be soluble in a few minutes of CPU time. 

9 Conclusions and current work 
We have produced algorithms which solve the interface equation for q machines which are not weakly 
determinate. Basic versions of these algorithms require impracticably large computation time for machines 
with more than a very small number of states. More advanced versions are under development which are 
more likely to produce solutions in a reasonable amount of time. Current work involves the optimisation of 
the heuristics f.r tuple selection in the constructive algorithm. 

Acknowledgements: The authors would like to thank the director of British Telecom Research Laborato- 
ries for permission to publish this paper. Thanks are also due to C Osborn and B Lloyd (both of the System 
and Software Engineering Division) for translating abstract mathematics into working Pascal programs. 
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Implementing Mathematics as an Approach for 
Formal Reasoning 

Robert L. Constable 
Department of Computer Science 

306 Upson Hall 
Cornell University 
Ithaca, NY 14850 

Two simple but important algorithms used to support automated reasoning are tautology 
checking and matching. Given two terms matching produces a substitution, if one exists, 
that maps the first term to the second. In this lecture these two algorithms are used to 
illustrate the approach to automating reasoning suggested in the title. Both algorithms 
can be derived and verified in the Nuprl proof development system following exactly the 
informal presentation we use here. 

These examples serve to introduce a particular automated reasoning system, Nuprl, 
as well as the idea of deriving programs from constructive proofs. The treatment of the 
examples also suggests how these systems can be soundly extended by the addition of 
constructive metatheorems about themselves to their libraries of results. 
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Pairings on Lambda Algebras 

W. S. Hatcher, Universite Laval, Canada and 
Marcel Tonga, Universite d'yaounde, Cameroun 

This paper continues the authors' universal algebraic approach to 
the study of the X-calculus begun in [Hatcher & Tonga 1985] and 
further developed in [Hatcher & Scott, 1986] and [Tonga 1987]. The 
basic insight underlying this approach is that the traditional X-calculus 
is algebraically defective because it uses only one-half of the natural 

B 
isomorphism ABxC s (AC) , namely the right-hand side. The principal 

means of removing this defect is by an appropriate theory of pairings 

on so-called X-algebras. 
Let A - (A,1 ) be a groupoid ( * is a binary operation, called 

application, on the non-empty set A). We assume |A| > 1 throughout. A 

is a \-sgstem if it supports a syntactically appropriate X-operator 

satisfying the conversion identities (Xxt)'x ■ t, where t is any A-term, 

i.e., a term of the first-order diagram language L(A) of groupoids over 

A (thus an element of the underlying set WA(X) of the absolutely free 

(word-) algebra w of groupoids with distinguished constants A and 

variables X) and 3 is the minimal congruence relation on WA(X), 

obtained by taking all possible evaluations of X in A). Thus, a X-system 

A has constants K, S s A such that K'a'b = a and S'a'b'c = (a'c)'(b'c) 

hold, where a, b, and c are any elements of A (parenthesis-free 

iterations of application are associated to the left). A X-system 

satisfying all universal A-X-identities (see [Hatcher & Scott 1986]) is a 

X-algebra. and a Xn-algebra if it satisfies the further identity (TI): 

Xx(t'x) s t, where t is any A-term. 
A pairing is defined on a nonempty set A whenever A supports a 

binary coupling operation [a,b] and unary projection operations p(x) and 

q(x) satisfying the identities p([a,b]) =• a and q([a,b]) = b. If the set A is 

the support of a X-system A,   then a pairing with binary coupling   [a.b] 
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is defined on A precisely when there exist nullary operations TT1 and IT2 

on A satisfying the identities ^'[a^] = a^   given IT, and TT2, p(x) = n/x 

and q(x) » i^'x, while, conversely, n, = Xxp(x) and TT2 = Xxq(x) when p(x) 

and q(x) are given. 
A pairing is usually defined on X-systems by: [a,b]x = Xx(x'a'b); ■n1 

- Xx(x'K); TT2
X = XxCx'K'CS'K'K)) (see e.g. [Barendregt 1984]). However, this 

pairing has undesirable special properties. For example, it satisfies the 

condition of suriectivitu. [TT1
x'a,TT2

x,a]x = a, only when |A| = 1 (see 
[Tonga 1987, p. 18]). We call this pairing canonical to distinguish it 

from others. 
This difficulty concerning the canonical pairing is overcome by 

extending the language L(A) of groupoids to a language L^tA) that 

includes new constants TT1 and IT2 and a second binary operation [-, ■]. 
The structure A - (A, '. [-, ■]. TTV TT2) is a coupled grouPQld when it 

satisfies the identities n/ta.b] = a and TT2'[a,b] = b for all a, b € A. A 
coupled groupoid is a x-n-system if it supports a syntactically 

appropriate X-operator satisfying conversion identities for all terms t 

of L1T(A). We have: 

Theorem 1. A coupled groupoid A is a X-TT-system if and only if A 
has constants S, K, and W satisfying the identities K'a'b - a; S'a'b'c = 
(a'c)'(b'c); W'a'b*c = [a'c, b'c], where a, b, and c are any elements of A. ■ 

This combinatory form of X-iT-systems is very helpful in studying 
the relationship between various pairings defined on them. Indeed, we 
can use the X-operator in a X-TT-system to define pairings other than 
the one given by the primitive coupling operation [-, i] and the primitive 
constants TT1 and IT2. An important and useful example is the following: 

A x-n-system satisfying all universal A-X-TT-identities (see [Tonga 
1987, p. 23]) is a x-ir-algebra. and a X-TT-algebra satisfying the identity 
(H) is a x-Ti-TT-algebra. Let ^ be a X-Ti-n-algebra. Then, <a,b) = 
Xx[a'x,b'x], p(x) = XydT^x'y)), and q(x) = Xy(TT2'(x'y)) define a pairing on 
A, called a fnnrtinn pairing. It is a pairing frequently used when 
dealing with the "monoid form" of a X-7i-iT-system, in which the 
X-operator is used to define the following further operations. (1) 
Composition: a»b = Xx(a'(b,x)).   (2) Identity: I = Xx(x).   (3) Exponentiation 
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(Currying up): g* - Xx(Xy(g'[x,y])). (4) Extraction (Currying down): fg = 
Xx(g'(TT1

,x)'(TT2
,x)). (5) Evaluation: s = fl. If the original pairing is the 

canonical one, then the derived function pairing is called standard- The 
standard function pairing can be given an intrinsic definition in terms 
of the monoid structure of the system (see [Tonga 1987, p. 60]). 

Suppose, now, that we are given a monoid (M, <», I) enriched with a 
further binary operation <-, •>, a unary operation *, and nullary 
operations TTV IT2, and s. Then n - (M, •, I, <-. ■}, , *, IT1,TT2J s) is a xsak 
c-monoid if these data satisfy the following identities: ir^a,, a2> * at; 

<a, b>»c - <aoc, b<»c>; so<a*oTTv u2> = ao<TTv IT2>; a*«b = (ao<b°irr TT2»*. 

Theorem 2. Any weak C-monoid is, under the appropriate definitions, 
a X-u-algebra. Conversely, any X-n-iT-algebra is, under the definitions 

given above, a weak C-monoid. ■ 
Only the (=>) half of Theorem 2 is really new (although the 

converse was in fact established only for the standard pairing, see 
[Adachi 1983] and [Koymans 1984]). The proof uses a variant, due to 
Tonga, of the discriminant of [Hatcher & Scott 1986]. 

A weak C-monoid n is a x-monoid if the identity e - s°<TT1f TT2> 

holds in n , an ^-monoid if the identity s* * I holds, and a surjective 
monoid if <TTr IT2> - I. Finally, a surjective n-monoid is a C-monPid- 

Theorem 3. Any X-n-monoid is a X-Ti-n-algebra and, conversely, any 
X-Ti-iT-algebra is a X-Ti-monoid. ■ 

This result is contained in [Tonga 1987]. It strictly generalizes the 
main result of [Hatcher & Scott 1986], employing similar techniques 
and using the result of Theorem 2 above as a lemma. 

In fact, Theorem 3 is a (particularly useful) special case of the 

following theorem: 
Theorem 4. There is an equivalence of categories between the 

category of all X-ir-algebras and the category of all X-monoids. ■ 
The special case of Theorem 4 obtained by taking only the 

canonical pairing for the X-algebras and the standard pairing for 
X-monoids is the well-known result of [Adachi 1983] and [Koymans 

1984]. 

12.1 



Finally, we give necessary and sufficient conditions for any two 
pairings to be pairings for the same, given X-monoid structure. This 
generalizes a similar result for C-monoids found in [Lambek & Scott 

19861 
The results of the present paper show that most of the various 

structures which serve as models for the X-calculus have, when endowed 
with a pairing system, elegant algebraic formulations as monoids. In 
particular, we have obtained these results without ever imposing the 
condition of surjectivity on our pairings, üet, all of the results extend 

easily to the surjective case. 
Important for computer science and the theory of recursive 

functions in general is the fact that none of the various structures 
dealt with in this study are required to be extensional (or even weakly 

extensional). 
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Data abstraction has been widely recognized as an important technique for designing pro- 
grams and the notion of Abstract Data Types (ADT for short) was invented for formally study- 
ing these abstraction techniques. In particular, equational specifications of ADT, which posit a 
set of many-sorted algebraic objects to a finite set of equations, enjoy considerable popularity 
because programmers can easily formalize equations within programming languages while pure 
mathematicians can easily study the algebraic objects specified by equations. However, many 
people feel that this approach creates more problems than it solves [ManesArbib 86,Ch.l4]. 
Such kind of frustration comes, we believe, partially from definitions of ADT or equivalently, 
interpretations of equational specifications. 

According to the ADJ group [Goguen et al 75], an ADT is an isomorphic class of universal 
algebras. They proposed that the class of initial models (unique under isomorphism), which are 
the minimal algebraic structure satisfying the given equations, are used as the interpretation 
or semantics of specifications [Goguen et al 75]. In this initial-model approach, all functions 
in a specification are considered uniformly. 

Another interesting isomorphic class of universal algebras is the ones isomorphic to the 
set of algebraic objects built up uniquely by constructors. In this approach, all functions in 
a specification are explicitly classified into constructors and nonconstructors (or destructors), 
with the interpretation that the constructors and equations on constructors define the model 
(called constructor modet) of a specification. This approach to equational specifications is 
not new: Peano's arithmetics, Boyer and Moore's shell-principle, etc., can be considered as 
instances of this approach. 

A serious problem in the initial-model approach is to handle erroneous and meaningless 
expressions as well as incompletely defined nonconstructors. When some incomplete functions 
are presented, it is often difficult to reconcile the initial object condition with intuitively correct 
equations of the intended model. For example, suppose that a specification defines '+' over 
natural numbers with the equations E= {0 + x = x, suc(x) + y = suc(x + y) }. In this case, 
the initial model of E is (isomorphic to) the natural number set and the equation x + y = y + x 
is true in the initial model. If E is extended by adding a single equation pre(suc(x)) = x, 
then x + y = y + x is no longer true in the new initial model, since the function pre is not 
defined on 0. If pre(O) is substituted for x and 0 for y in x + y = y + x, the resulting two 
sides are not congruent. This is not very surprising as the initial object set can be changed 
with the addition of a new function symbol which may introduce new values. The side effect 
of this change is that the new initial model is often very hard to describe and is no longer the 
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intended model. 
To overcome this problem, many attempts have been tried. The sufficient completeness 

property of ADT specifications introduced by Guttag [Guttag 75] has been found useful. A 
specification is sufficiently complete if every nonconstructor is completely defined over construc- 
tors. However, requiring every specification being sufficiently complete is often inconvenient 
and is too restrictive in a system for building specifications. 

It is always possible that the intended model can be built up by a minimal set of operators 
(called constructors). As long as the constructor set and their relations are fixed in a speci- 
fication, we may consider that the model of the specification remains unchanged, no matter 
what functions have been added and whether these new functions are completely defined. This 
intended model is what we call "constructor model". 

For a given specification, the constructor model has a close relation with the initial model. 
In terms of universal algebras, the constructor model is just a subalgebra of the initial model 
with constructor terms as its domains. 

Definition 1 (subalgebra) Given a signature (S,F) and an F-algebra A - (SA,FA), where 
SA is the domain of A and FA, the functions of A. An F-algebra B = (5B, FB) is said to be 
a subalgebra of A if (i) FB = FA and (ii) for each Aa € SA and Bs e SB, we have B, C Aa, 
where s€S, A, and B, are the object set of sort s in A and B, respectively. 

In contrast to the classical definition [BirkhoffLipson 70], we do not require that the domains 
of a subalgebra be closed under its operations. This is because all the functions are total in 
an initial algebra. If we had required that subalgebras be closed under functional application, 
then an initial algebra could not have any non-trivial subalgebras, except for the case where 
some domains of such subalgebras are void. 

Let I(F, E) denote the initial algebra specified by a signature (5, F) and a set E of equa- 
tions. We are interested in subalgebras of I(F, E) such that the domains of such a subalgebra 
are not void for each sort s € S and are determined by specifying a subset of F. More precisely, 
for a subset F' C F, we require the domains of its subalgebra to be isomorphic to the free 
term algebra T(F') modulo the congruence =£. We say that they are subalgebras of I{F,E) 
with respect to F' and write I(F/F', E) to denote them. 

Theorem 2 Given S, F, E and F' C F. The following statements are equivalent: 
(a) I(F, E) is isomorphic to I{F/F', E); 
(b) The functions of I(F/F',E) are total; 
(c) The E-congruence classes (modulo =E) of the term algebras T(F) and T(F') are 

isomorphic. 

Given a signature (S, F), a subset C of F and a set E of equations over F and variables, let 
us denote an equational specification by SP = (5, F, C, E), where C is called the constructors 
of SP and F — C, the nonconstructors of SP. 

Definition 3 (constructor model) Given a specification SP = (S, F,C, E), the constructor 
model of SP is the subalgebra I(F/C, E) of the initial model I(F, E) with respect to C. 

Example 4 Let SP = (S,F,C,E) = {{iowa},{0,suc,pre},{0,suc},{pre(suc(x)) = x}). The 
domain of sort iowa in the initial algebra of SP is neither the natural number set nor the 
integer set, it can be represented by: 
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{sue*(pre-'(0)) | i,j € IN, the natural number set}, 

which is isomorphic to IN x JZV. An initial algebra of SP is 

I(F, E) = (Nx IN, {0/, suci,prei}) 

where 
0/       =    (0,0), 
suci   =   A(»,j).(*' + l,i), 
pre/   =   A (i, j) .if (t = 0) then (*, j + 1) else (i - 1, j). 

The subalgebra of the initial model with respect to C — {0, sue} is: 

I(F/C,E) = (IN x {0},{0j,sucj,pre/}) 

where 0j, sucj and prej are the same as in I(F,E) above. By definition, I(F/C,E) is the 
constructor model of SP above. Note that the function prej is not total in I(F/C,E), since 
pre/((0,0)) = (0,1), which does not belong to the domain of I(F/C,E). 

By definition, the subalgebra of the initial model with respect to constructors is the con- 
structor model of an equational specification. It is easy to derive from Theorem 2 that if a 
specification is sufficiently complete, then the initial model and the constructor model of a 
specification are isomorphic. In general, the constructor model and the initial model are differ- 
ent. The advantage of the former over the later is that it is easy to reconcile the initial object 
condition among constructor terms with the intended model and to reconcile the soundness 
of equations in the constructor model with intuitively correct equations. Hence, it is more 
natural and intuitive to use constructor model as the ADT of a specification. 

Constructor model can be also considered as the initial model of the sub-specification of 
a specification obtained by ignoring any nonconstructors. In other words, every constructor 
model has an initial model specification. Because of the initiality of constructor models, the 
constructor model approach inherits almost any advantage of the initial model approach for 
ADT specifications. Like initial models, constructor models can be used to justify the correct- 
ness of equational programs. Because every value can be represented by a syntactical term, 
a computing step corresponds to a deduction step from a term t\ to another term ti by a 
set of inference rules. The correctness of the computing is thus reduced to the validity of the 
equation t\ = tt in the constructor model. Similarly, the validity of inference rules can be 
also verified in the constructor model. If the equations in a specification possesses a canonical 
rewrite system in which if the right side of a rewrite rule has non-constructors, then its left side 
has also non-constructors (called constructor preserving [Kapur et al 85]), then the constructor 
model is computable because the domain of the constructor model is the same as the collection 
of all the normal forms of ground constructor terms. 

In [Zhang 88], the constructor model has been used to establish the soundness of inductive 
theorem proving techniques and to characterize different classes of theorems of an equational 
specification. It is shown that the class of all the equations valid in the constructor model is a 
superset of the equations valid in the initial model, but is a subset of the equations which can 
be proved if we add one more inference rule called full consistency to the proof system (see 
also [KapurMusser 84]). It is also shown that the induction principle based the constructor 
model, with the rules of equational reasoning together, constitutes a set of inference rules that 
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has the monotonicity property with extension, a desirable property for automated reasoning 

systems. 
In [ManesArbib 86](pp.327), it is criticized that the initial model approach does not provide 

a satisfactory explanation on the relation between two ADT stack and queue. However, it 
becomes clear when we compare their constructor sets because they have the same constructors 
(after renaming). Both of them can be implemented by the ADT list because list not only has 
the same constructor set as that of stack and queue, but also has a richer set of nonconstructors 

than stack and queue. 

Finally, it is worth mentioning that the order-sorted algebra approach by [Goguen et al 85] 
is compatible with the constructor-model approach and their results (including the implemen- 
tation results in OBJ3 [GoguenWinkler 88]) can be carried over in a natural form. 

Acknowledgement: Thanks to Monagur Muralidharan for his useful comments on an earlier 

draft of this note. 
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Abstract: When observing termination of 
closed terms at all types in Plotkin's inter- 
preter for PCF [11], the standard cpo model 
A v is not adequate. We define a new model, 
A Y> with lifted functional types and prove 
its adequacy for this notion of observation. 
We prove that with the addition of a parallel 
conditional and a convergence testing opera- 
tor to the language, the model becomes fully 
abstract; with the addition of an existential- 
like operator, the language becomes univer- 
sal. Using the model as a guide, we develop a 
sound logic for the language. 

1    Introduction 

The denotational semantics most appropriate for a 
programming language depends crucially upon the 
observations one makes about computations. In 
general, an observation is some important behav- 
ior of the interpreter [8]. For example, in the arith- 
metic, higher-order programming language PCF 
[11, 13], one usually chooses to observe the results 
of arithmetic expressions—that a term of integer 
type reduces to a numeral. One may also extend 
the notion of observation to arbitrary terms, saying 
that two terms are observationally congruent if 
they produce the same observable outcomes in any 
program context. 

A good denotational semantics should be able 
to predict the observational behavior of a term. 
Each observation must therefore have a denota- 
tional meaning. When observing numerals in PCF, 
for example, M evaluates to 78 should imply that 
M means 78. If the converse holds as well, we say 
that the semantics is adequate. A perfect match 
occurs when observational congruence and semantic 

'Both authors were supported in part by NSF Grant No. 
8511190-DCR, ONR grant No. N00014-83-K-0125, and NSF 
Graduate Fellowships. 

equality coincide; the semantics is then called fully 
abstract. 

The language PCF, when observing numerals, 
has a well-matched denotational semantics. Plotkin 
and Sazonov show that the Scott-style, cpo model 
A v is adequate [11,12]. Moreover, although A v is 
not fully abstract, the addition of a parallel condi- 
tional operator pcond to PCF makes the model fully 
abstract under this notion of observation [11, 12]. 

There may be other plausible choices for obser- 
vations, e.g., in a language with stores, one could 
observe the contents of memory cells. Other notions 
of observation can open a morass of problems. In 
PCF, for example, one might wish to observe terms 
at higher type, e.g., printing a message when a term 
"equals" the identity function Xx.x. One must then 
choose the sense in which to compare terms of func- 
tional type: syntactic equality is probably too fine- 
grained, whereas observational congruence of terms 
is undecidable [17]. In particular, we cannot hope 
to observe the identity function in the same way we 
do numerals. 

Nevertheless, one may reasonably observe termi- 
nation of terms of functional type. When given a 
term of higher type, Plotkin's interpreter for PCF 
will either terminate at a A-abstraction or diverge. 
For example, let ß" be a term of type <7 that di- 
verges, and consider the two PCF terms \xT£lT and 
fiT->T. The PCF interpreter will halt on the first 
term and diverge on the second. In fact, most inter- 
preters for functional languages are "lazy," stopping 
at A-abstractions and printing some message indi- 
cating that the computation will proceed no further 
(e.g., LISP [15].) 

If we observe termination at higher type, A v 
fails to be adequate since the meanings of the two 
terms above are both _L. To regain adequacy, one 
could change the interpreter to reduce inside A- 
abstractions; Wadsworth [16] and Cosmadakis and 
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Meyer [4, 8] give examples of such interpreters. We 
take the opposite approach and try to build a model 
that reflects the behavior of the interpreter. We are 
willing to add new constants to PCF, as long as 
we do so conservatively; the interpreter's behavior 
should not change on terms without the new con- 
stants, and should still stop on abstractions. 

We choose "termination of closed terms at any 
type" and "evaluation to ground constants" as the 
fundamental observations. We introduce the model 
A Yi built using the common domain-theoretic con- 
structor of lifting, which includes an extra element 
at every functional type. The extra element is pre- 
cisely what we need to give distinct values to XxT.£lT 

and Qr~*T. We show that A y is adequate, and 
with the addition of pcond (at all types) and a con- 
vergence testing operator up?, the model becomes 
fully abstract for our notion of observation.1 

In A Yi there is a natural way to select a set 
of computable values from the domains.2 PCF 
terms always have computable meanings, but the 
computable values may not all be programmable. 
We say that a language is universal for a denota- 
tion^ semantics iff all computable semantic values 
are definable [11]. 

In PCF, all computable first-order functions are 
definable; these are precisely the partial recursive 
functions on integers. However, there are many 
higher-order computable functions which cannot be 
defined even when the language is extended with 
up? and pcond. One of them is a continuous ap- 
proximation to the existential quantifier 3 [11]. As 
in [11], this is essentially the only function miss- 
ing; once 3 has been added, the language becomes 
universal for the model A y. 

Adequacy, full abstraction and universality mark 
an intimate connection between PCF and the model 
A y. The point of obtaining such a model is, in 
part, to develop techniques for proving properties 
about code. We give some preliminary results in 
defining a logic (based on LCF [6, 13]) for a frag- 
ment of PCF with up?. The logic is shown to be 
sound for the model A y. 

(Xx.M)N —    M[x:=N] 
succn -*     71 + 1 

pred n —   n-1 
zero? 0 ->   tt 

zero? (n +1) —   ff 
cond tt M N —   M 
cond SM N —   N 

YM —   M(YM) 

M -+M' 
MN — M'N 

N —* N', c € {pred, succ, cond, zero?} 

1 These results were obtained independently from Abram- 
sky [1] and Ong [9, 10], who have proven similar adequacy 
and full abstraction results for an untyped A-calculus. Cos- 
madakis [4] has extended our results to a language with prod- 
uct, sum, and recursive types. 

2Every isolated element [14] in the model may be given a 
Gödel number n; an arbitrary element d is computable if 
{n : en   is isolated and  en Q d} is r.e. 

cN -* cN' 

Figure 1: Operational Rules for PCF 

2 Review of PCF 
The language PCF is simply-typed A-calculus, with 
types given by the grammar 

a  ::==  t | o \ a—*<r 

The type constants t, and o are used for integers 
and Booleans respectively. Structured rewrite rules 
for the interpreter are given in Figure 1. We write 
M -» N when M reduces to N in zero or more steps 
of evaluation. A term M is stopped if it cannot be 
rewritten further. For example, Ax.succ 3 does not 
rewrite further, despite the fact that it has a redex 
as a subterm. This is essentially the language given 
in [11]. The main difference, aside from notation, is 
that pred 0 —► 0 rather than stopping. 

3 The Model 
Our model of PCF, A y, is based on Scott domains 
[14] as is the standard model A \y. The base types 
are the same in both models, with A \j\i\ ■= Dl = 
{±,0,1,2,...} and Ay[6\ = D° = {-L,tt,ff} or- 
dered -L C x for all x. The difference between the 
two models appears at higher type; in A \j, the func- 
tional types are 

A vl<r — T] = A vH ^ A v[r] 

where D-^*E is the cpo of continuous functions 
from D to E ordered pointwise [11, 13]. In A y, 
we lift each function space once: 

A yl<T-+r] = IT-T = (A yM^A Y[r])± 
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If D is a domain, (-D)j. is D with a new bottom 
element added [1, 9,10]. Concretely, the elements of 
(D)x are {{d, 0) : d € £>}U{-L}, ordered with LQd 
for all d, and {d, 0) C (d', 0) iff d C d'. The function 
■ft : D -+ (D)x with fid = (d,0) is an injection; 
the function 4 :(-D)j. -* -0. witn ^(d>0) = <* and 

JJ.± = _L, is the corresponding projection. 
Given these elements, we assign meanings to 

terms using an environment model [2, 5, 7] in the 
usual way. Constants of base type mean the obvious 
elements in the domains, and constants of higher 
type mean lifted functions. The equations 

Ay[MN]p    =    HAYIM]P)(AYINIP) 

AyfXx.Mjp    =    itf, 

where /(d) = A y{M}(p[x y-* d]), specify the mean- 
ings of applications and abstractions. 

4 Adequacy, Full Abstraction, and 
Universality- 

Having defined the model A y that distinguishes fi 
and As.fi, we may ask to what extent the opera- 
tional semantics and the model agree. A first cri- 
terion is adequacy [3, 8, 11]: the semantics should 
predict the observational outcome of interpreting 
a term. We have chosen to observe closed terms 
evaluating to a numeral at base type, and halting 
at higher type. Denotationally, this corresponds to 
meaning a number at base type, and meaning any- 
thing but _L at higher type. For our notion of ob- 
servation, A Y is an adequate model: 

Theorem 1 (Adequacy) The lifted model A y »* 
adequate for PCF with respect to observing numer- 
als and termination, i.e., for closed terms M, inte- 
gers n, and proper Booleans b, 

A y\M]p = n iff M -» n 
A YM/> = b iff M — b 
A y{M}p #-L iff evaluation of M halts 

A fully abstract model allows one to substitute 
denotational reasoning for operational reasoning. 

Definition 1 A denotational semantics [•] is fully 
abstract (with respect to a set of observations) if 
for any terms M, N, [M] = [N] iff M and N are 
observationally congruent. 

Plotkin [11] and Sazonov [12] show that A v is not 
fully abstract: PCF lacks parallel facilities present 

in the cpo semantics, facilities that can make dis- 
tinctions between observationally congruent terms. 
The same is true of Ay, it also contains parallel 
elements. 

One way to achieve full abstraction is to extend 
the language. We add a parallel conditional opera- 
tor pcond„ : o —* a —► <r —► <r for all types o-, with the 
reduction rules (cf. [11]) 

pcond, tt M N 
pcond„ ff M N 

pcond^ B c c 
(pconda^ß B M N)Q 

M 
N 
c,  where a = o, i 

pcond^ B (M Q) (N Q) 

B' 
pcond,, BMN -* pcond. B' M N 

M — M' 
pcond„ BMN -+ pcond. B M' N 

N -+JV' 
pcond, B M N -* pcond, BMN' 

But even with this addition, A y still makes too 
many distinctions between terms: 

Theorem 2 The model A y is not fully abstract 
for PCF+pcond when observing termination. 

The reason for this failure is that PCF cannot itself 
make all of our observations. It can observe numer- 
als, in the sense that there is a term Tn such that 
TnM -» tt iff M satisfied the observation "evaluates 
to n." However, one can show that there is no such 
PCF-definable test for convergence at higher type. 

The solution is simple; we add convergence test- 
ing (cf. [1, 9, 10]) to the language. At every type, 
we add the operator up? with the rules 

up?c   —*   tt 

up? (Xx.M)    -»   tt 

M^M' 
up?M —► up? M' 

Theorem 3 (Full Abstraction) A y is fully ab- 
stract for PCF+pcond + up? when observing termi- 
nation. 

In order to achieve universality for A y, an exis- 
tential quantifier, which introduces unbounded par- 
allelism into the interpreter, must be added to PCF 
[11]. 

Theorem 4 (Universality) PCF with the opera- 
tors pcond, up?, and 3 is universal for A y. 
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5 Logic for Lifted PCF 

The adequacy and full abstraction theorems show 
that A Y is a suitable guide for developing reason- 
ing principles for code. A logic based on A y should 
prove inequations between terms rather than equa- 
tions. The constant cond also requires reasoning by 
cases, viz., if an inequation is true when a Boolean 
term is tt, ff, or ß, the inequation should hold. 

The wffs in the logic have the form P \- M C JV, 
where P is a set of inequations (c/. [13]). We write 
P \- M = N as shorthand for P h M C. N and 
P h N C M. Due to a lack of space, we give two 
examples of axioms rather than the full logic: 

0   r-    MQXx.Mx 

0   h   M C cond (up? M) M N 

(The first resembles ^reduction [2]; note that the 
rule 0 h Xx.M xQM is not sound, however, since 
it is not the case that A y[Ax.fi i] C A ylClJ.) One 
can then show the following about the logic: 

Theorem 5 (Soundness) // 0 h M Q N, then 
A y[M] C .4 y[N]. 

The converse necessarily fails—the set of true in- 
equations is not axiomatizable [13]. 
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1. Introduction 

Many-sorted (conditional) equational logic is the most established basis to the algebraic approach to abstract data type (ADT) 

specification (see e.g. [EM 85]). However this logic proves somewhat inadequate in many practical situations, e.g. it entails 
writing a large amount of equations to deal with error cases and partially defined functions. Order-sorted algebras [G 78] were 

proposed in order to overcome such practical inadequacies. Nonetheless the order-sorted approach is not sufficiently flexible 
to deal with some aspects of ADT specification (see [M 88] for a technically detailed criticism and [P 88] for a more flexible 

approach to sort ordering and dependent types). 

The A logic presented in this paper is a generalization of many-sorted equational logic that extends 'reasoning with equations' 
towards 'reasoning with equations and type assignments'. It provides a single, unified framework capable to cope with diverse 

phenomena such as partiality, polymorphism and dependent types. In Section 2 we illustrate and support this claim by simple 
examples. Section 3 is an overview of formal definitions and results. Here we summarize the main intuitions behind this logic. 

1. Elements and sorts (or types, which from now on we use synonymously) are merged in a single carrier equipped with a 
binary typing relation, which assigns types to elements (hence types are elements themselves). This immediately introduces 
partiality because, in general, an operation is defined only on elements of suitable types. Moreover, one gets a great amount of 
flexibility and generality: several types may be assigned to an element, operations may take type arguments or yield types, etc. 

2. Usual ADT presentations consist of two parts: a static one which defines the signature and a dynamic one which presents 

the axioms. A A presentation, in a more general way, merges the type constraints and the equality ones. In fact, A formulae are 

conditional formula? where equations and type assignments may occur indifferently in the premise and in the conclusion. 

These intuitions were first exploited in [MS 88]: the typed equational logic introduced there is an extension of many-sorted 
equational logic exactly in the sense mentioned above, and soundness, completeness, and initiality results were established for 
it. The semantics was set in a partial-algebraic framework [ABN 80]. The pragmatics of that logic were further investigated in 
[MSS 88], where we also addressed the pragmatic question of how to cater, in that framework, for functions that are partially 
defined but non-strict (if_then_else_ is a typical example of such a function). We found that the typing relation may offer a 
correctness tool, in the sense, for instance, that one may view as meaningless terms - but now we could otherwise say: terms 
representing underdefined elements, see below - those terms to which no type can ever be assigned (in a given presentation). 
Wc also noted that type as a 'correctness tool' is a concept that appears at the early days of mathematical logic (e.g. Russell). 

Solicited by an anonymous referee, and inspired by Mosses' Unified Algebras [M 88], we reconsider our former enthusiasm 

for partial algebras under a more critical light, coming to the conclusion that, to offer an adequate representation of partiality, 
one need not necessarily embark on the semantical complications of the theory of partial algebras (we refer the reader to the 

'Introduction' in [R 87] for a concise summary of those complications). The step of the present work from our former 
approach is precisely this: replacing, in the general case rather than in special ones, the syntax-sided notion of meaningless 
term with the semantics-sided notion of underdefined element ("ideal element", following Hubert). This amounts to choose as 
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semantical framework total, rather than partial, one-sorted algebras, yet still equipped with a binary typing relation. More 
precisely, we will consider any element of the single carrier of any such algebra to be underdefined if neither any type is 
assigned to it nor is itself a type assigned to some element of the carrier. In addition to the advantages that follow from the 
greater simplicity of a total algebra framework, a further gain seems to be available on the methodological side too, in 
connection with formal notions of refinement and implementation of specifications: elements that are underdefined at a certain 

stage of a software engineering process may become defined at a later, less abstract stage - e.g. when some specific 
classification of exceptions is desired. The first example below illustrates the exception by default principle, useful at the more 

abstract stages of software design. 

Two more examples illustrate, in complementary cases, the natural place that generality of description finds in our framework. 

As a matter of fact, we find that both type polymorphism (parameterization by types) and dependent types (parameterization by 
values) are representatives of the same species: functional abstraction. The freedom of term construction as a facility to 
express types demolishes the syntactical barriers that in ad-hoc approaches make a uniform treatment so difficult to achieve. 
Due to space limitations, the examples of the next Section have austere explanations and the formal overview of Section 3 

gives just essential definitions and results with no proof. The full paper [MSS 89] is committed to a duly comprehensive 

treatment, where also the further results and investigations mentioned in Section 4 are argued in technical detail. 

2. DELTA specification examples 

Why yet another logic? The answer takes here the form of a few simple examples. Our bare syntax is as follows: essentially, a 
A specification is a named A presentation (see definitions 3.6 and 3.7) using declared variables, with the smallest (one-sorted, 

ranked: see definition 3.1) signature that is compatible with the axioms of the presentations. 

The theory of ADT's is often identified with the theory of stacks, due to the popularity of the stack data type as specification 
example. The basic trouble is found here in determining which outcome should be expected from popping or topping the 
empty stack With the following specification (on the left hand side) the terms pop(empty) and top(empty), among others, 

denote underdefined elements because they occur in no type assignment of the STACK A theory. 

IDENTITY (type) 
x, d, c, f, t 
d: type, c: type -» d to c: type 
x : d, f: d to c -» apply(f,x): c 
t: type -» id t: t to t 
t: type, x: t -> apply(id t, x) a x 

spec STACK spec 
var s, i var 
in empty: stack 

s : stack, i: item -» push(s.i) : stack 
s : stack, i: item -» pop(push(s,i)) = s 
s : stack, i: item -» top(push(s,i)) s i 

in 

end end 

The identity function is a well-known example of higher-order polymorphic function: in the example on the right hand side 
above, a generic 'type' parameter is declared, to enable one to specialize the definition as desired. For instance, when using 
such a definition in the context of a functional programming language, the parameter is to be instantiated by the (higher-order) 
type of the basic types of that language. Note that the syntax is assumed to allow both binary infix and unary prefix operators. 
Somewhat relating to the previous example, we show a use of dependent types in our last example, which can be compared 
with the similar example in [P 88], slightly but necessarily less parsimonious - in our opinion (argumentation in [MSS 89]). 

spec CATEGORY (obj, horn) 
var x, y, z, w, f, g, h 
in f: hom(x,y) -> dorn f: obj f: hom(x,y) -> cod f: obj 

f: hom(x,y) -> dorn fsx f: hom(x.y) -» codf=y 
x : obj -» id x : hom(x.x) f: hom(x.y), g : hom(y,z) -» f; g : hom(x,z) 
f: hom(x,y) -» (id x); f s f f: hom(x.y) -* f; (id y) s f 
f: hom(w,x), g : hom(x.y), h: hom(y,z) -> (f; g); h = f; (g; h) 

end 
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3. Overview of DELTA 

3.1 Definition Let Q be a one-sorted algebraic signature, i.e. a set of operators each with a number specifying its arity. A A 

Q-algebra A is a pair <A, :A>, with A a one-sorted (total) Q-algebra and :A (the typing) a binary relation on the carrier A of A.© 

3.2 Definition A A morphism from a A Q-algebra A into a A Q-algebra B is a morphism if. A -» B that respects the typing, 

i.e. such that if ai :A a2 then ty(a{) :B «Ka^- ^ 

3.3 Definition A A congruence on a A algebra A is a pair 9 = <s9, :9 > of binary relations on A such that: 

(i) Hg is a congruence on A; 
(ii) ifai s9bi andai :ec,thenbi :9 c; 

(iii) if ai =9 bi and c :9 ai, then c :e bi 

(iv) :AC:9-© 

3.4 Definition If 0 = <=9, :e > is a A congruence on A, then we let [a]e denote the congruence class [aK and define the 
A quotient A/9 to be the A algebra <A/=Q, :#& > where the typing relation is defined by [a]9 :^e Me iff *ere exist a' e [a]9 and 

b' e [b]9 such that a' :e b'. © 

3.5 Definition rQ(V) =def <7Q(V), 0> is the term A algebra of signature Q and variables V, where 7Q(V) is the standard 

term algebra. © 

3.6 Definition atomic Aformulce:    (i) tl s t2      (equations) 
(ii) tl: t2      (type assignments) with tl, t2 e TQ(V), 

Aformulce: (iii) r -* a 
with a an atomic A formula, called conclusion, and T a finite, possibly empty set of atomic A formulae, called assumption. © 

3.7 Definition A A presentation is a triple <Q, V, E>, where E is a finite set of A formulae on Q and V. © 

Substitution, assignment, evaluation have the usual definitions. By the evaluation lemma (existence of a unique A morphism 
extending a given assignment) term evaluation is determined by assignment A satisfaction is then defined as one expects. The 
A calculus |-A is a binary relation between A presentations and A formula; that is constructed using two axiom Schemas and 
eight inference rule Schemas (collectively termed rules of the A calculus, for short) in the usual, proof-theoretic way. The rules 
are presented in Table 1, where, understanding the signature Q. and variables V (as we will often feel free to do), we adopt the 
following notation: (i) t, u (possibly with subscripts) are terms, (ii) a, ß are atomic formula;, (iii) T is an assumption, (iv) <|>isa 
formula, (v) a is a substitution : TQ(V) -* Tß(V), extended to formulae in the usual way, (vi) oo is a k-ary operator. © 

1. E |-A {a} -> a Tautology 

2. If E |-A r -> a then E |-A Tu{ß] -» a Monotonicity 
3. E|-At = t Reflexivity 

4. //E|-Ar-^t1st2 rAe/i E|-Ar^t2 = ti Symmetry 

5. // E |-A T -> t! s t2 and E |-A r -> t2 = t3 then E HA T -> ti = 13 Transitivity 

6. // E |-A T -» a then E |-A a(T) -> a(a) Substitution 
7. // E |-A T -> ti = ui (i=l,...Jc) then E |-A T -> ffl(ti,...,tfc) = co(ui,...,uk) Replacement 

8. // E I-A Tu{a} -» ß and E |-A T -> a tfen E |-A T -» ß ModusPonenj 
9. // E |-A T -> ti s t2 and E |-A T ^ ti: u fften E hA T -»t2: u ry/?zng equals 

10. // E |-A f -> ui s u2 and E ha f -> t: ui then E |-A T -* t: u2 Equating types 

Table 1: The rules of the A calculus 
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3.8 Proposition The A calculus is sound: if the A algebra A satisfies the presentation E, then it satisfies any formula derivable 

from E; in symbols: (A 1= E A E |-A <t>) => ■*1= <|>. 0 

3.9 Theorem The A calculus is complete: if the formula * is a logical consequence of the presentation E, then it is derivable 

from E; together with the soundness (proposition 3.8), this is formulated as: E |-A <!> <=> E1= $. 0 

Let Ta denote the ground term A Q-algebra; Zfc/E is then the quotient of Ta by the A congruence defined via the A calculus. 

3.10 Theorem Ta/Eis initial in the class of A ß-algebras that satisfy E. 0 

4. Summary of further results, current work and future developments 

Further results have been obtained in [MSS 89] relating to representation in A of order-sotted logic [G 78] and of the logic of 

partial algebras [B 86], [BW 82]. For instance, if O is an order-sorted presentation and $ a formula of that logic, then O l=os <t> 

iff tA(0) K TA(<t>), where TA is a suitable translation operator. In a similar manner A enables one to obtain calculi and 

completeness theorems for the logic of partial algebras, as well as other logics (category theory). On the computational side, 

generalizations of the confluence results presented in [BK 86] are available for A. 

We arc currently studying the potential of A for applications, e.g. specification of software systems: notions of hierarchy and 
modularity are here the main topics of investigation. Some future work will be concerned with a particular, especially 
intriguing application domain: the algebraic formulation of significant fragments of natural language grammars. We dared a 
glimpse at this area in our previous work [MSS 88] and were encouraged for a great ease of expression, which ensues with 

integrating equality, types and term construction. 
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In this paper we show an algebraic transformation of sequential specifications to the equivalent 
concurrent specifications. Here, we consider sequential specifications in the form of regular 
expressions extended with a declaration of the actions that are independent and have a potential for a 
concurrent execution. This kind of a sequential specification can be represented in the sequential 
programming language, called Banach. (Banach has been designed by us in such a way that the 
programmer does not have to be concerned about synchronization details, [JM88, JM89].) The 
concurrent specification can be translated into an equivalent concurrent specification, and finally into a 
concurrent programming language, such as occam. 

The above results have important applications in software technology. The user of the Banach 
programming language can take advantage of the increased efficiency of concurrent architectures, and 
at the same time she/he can concentrate on algorithms being implemented and disregard technical 
issues, such as low-level synchronization details. The (automatic) transformation of the provided 
sequential specification will yield an equivalent concurrent specification. This approach has its origin 
in research described in [J81, LH82.] 

A sequential specification of executions of actions from some alphabet A is given by a regular 
expression R. The semantics of this specification is defined by two components ([J85, JL88]): the set 
RFS(R) of resulting histories of R defined as the language generated by the expression R, and the 
set FS(R) of histories, (or, firing sequences), defined as Pref (RFS(R)); where for a language 

LcA*. Pref(L) = {x€A*: 3y€ A* (xy€L)}. 
Concurrent regular expression is of the form CR = Rill...llRn, where for i=l,...,n; Riis a 

regular expression. The semantics of concurrent expressions can be defined in an algebraic way, 
using vector sequences [SM79]. First, for any action x€ A, where A is the alphabet of CR defined as 
the union of alphabets of component expressions Ri, we denote by & the vector [hi(x),...,hn(x)], 
where hi(x) is a if x€ Ai, and e otherwise (here, s is a distinguished element denoting null) Then we 
put vect(L) = {x: x€L}, for any LcA*. Now, the semantics of CR is defined by the set of 
resulting histories 

RVFS(CR) = vect(A*)nRFS(Ri)x...xRFS(R„) 
and the set of histories 

VFS(CR) = vect(A*)n FS(Ri) x...x FS(R„). 
Both these sets are closed under the operation Pref. 
Note that the above semantics, described in terms of vector firing sequences, can be equivalently 
described using Mazurkiewicz's traces (see [Maz77, Maz86]): 
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For u,v € A*, a shuffle of u and v is defined as 

sh(u,v)={uiviU2...unvn: u=uiU2...u„, v=viV2...vn for i = l,...n, ui € A*, vi € A*}. 

ForLi,L2CA*,weput 
sh(Li,L2) = U^Lx.vCLz) sh(u,v). 

Now, we define a parallel composition of words and languages. For a partition Ai, A2 of A and 

u€Ai*,v€A2* we put 
ullv=sh((A2-Ai)*,u) fl sh((Ai-A2)*,v) 

and for Li C A1*, L2C A2* we put 

L1IIL2 = {x: x = ullv, u€Li, v€L2). 
By associativity, we extend the operation II to n words and n languages, n£2. Then, for a 
CR:RilL.IIRn we can define the set of resulting histories as a parallel composition of resulting 
histories of components: 

RFS(Ri)IUlRFS(Rn) ;    , ..*,...* 
and similarly, we define the set of histories as a parallel composition of histories of components: 

FS(Ri)IL.IlFS(R„). .    , 
By a p-concurrent regular expression (a potentially concurrent expression) we mean a 

regular expression R, the alphabet of which is partitioned into a finite number of subsets (intuitively, 
actions that are mutually dependent occur in the same subset.) Thus, a p-concurrent regular 
expression, (PCR) is a pair (R, A=AiuA2u...uAn) where A is the alphabet of R We define the 
semantics of p-concurrent expressions using vector filing sequences (comp. [Jan85].) The set of 
resulting histories of the p-concurrent expression is defined as 

RVFS(CR) = vect(RFS(R)) . 
and the set of histories of the p-concurrent expression is defined as 

VFS(CR) = Pref (vect(RFS(R))) - Pref (RVFS(CR)). 
Here, R is the first component of CR. 

As above, the semantics of p-concurrent regular expressions can be defined using traces: Let 1 be 
an independence relation over the alphabet A of a CR: (R, A=AiuA2U...uAn) defined as follows: 
(u,v) € I if V i, u $ Ai or v $ Ai. We denote by ind a relation over A* associated with the relation I: 

(u,v) € ind if v can be obtained from u by permuting successive letters that are in the relation L For a 

language LC A*, a trace language, tr(L) is a set of equivalence classes L/ind of elements of L. 
Now, we define resulting histories as tr (RFS(R)), and histories as Pref (tr(RFS(R))). 

As mentioned above, p-concurrent regular expressions have a potential for a concurrent execution. 
In order to reveal this potential, for a given p-concurrent expression PCR we should find a concurrent 
expression that will be equivalent to this PCR For this sake, we now describe a transformation Q 
of p-concurrent expression PCR : (R, A=Aiu A2U...uA„) into concurrent expression CR of the form 
CR: RilL.IIRn (see [Jan85.]) Each of the component expressions is formed by erasing, or the 
concealment in R of these actions that do not appear in Ai. Thus, Alpha(Ri) = Ai and RFS(R0 = 
hi(RFS(R)). The transformation Q is not a function, that is there may be more than one element of 
p(PCR). From the definition of £ it follows that 

Rl II...II Rn€?(PCR) iff (Vi) RFS(R0 = RFS(PCRi8) 
where PCRis is derived from PCR by replacing all elements of A-Ai by S. 

We say that a p-concurrent regular expression PCR = (R, A=AiuA2U...uAn) is proper if C(PCR) 
is equivalent to PCR, that is 

VFS(PCR) = VFS(C(PCR)) and RVFS(PCR) = RVFS(?(PCR)). 
(The above equalities are well-defined because for §1, |2€Q(PCR) we have VFS(gi) = VFS(|2) and 

RVFS(fi) = RVFS(£2).) 
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Example 
PCR:a;b;c      Ai={a,b}     A2={a,c}     ?(PCR)3CR: ((a;c)    I I    (b;c)) ■ 

Since the computations of PCR produce the same histories and resulting histories as the computations 
of CR, the above PCR is proper. In general, a PCR and a resulting CR may have different sets of 
histories and identical sets of resulting histories, or identical sets of histories and different sets of 
resulting histories. An example of the former case is 

PCR: (a;c;e), (b;d;f)  Ai = {a,e,b,f},A2 = {c,e,d,f} 
C(PCR)3CR:   ((a;e), (b;f)) I I ((c;e), (d;f)) 

for which the sets of resulting histories are identical, but the set of histories of CR includes the 
sequence ad, (leading to a deadlock), which clearly is not a history of the PCR. An example of the 
latter case is 

PCR:(a,b)*   Ai={a}   A2={b}   C(PCR)*CR: a* I lb* 
for which the sets of histories are identical, but resulting histories of the PCR must have the same 
number of occurrences of a's and b's, while resulting histories of the CR contain arbitrary number 
of these actions. 

Note that in the above examples p-concurrent expressions were not proper because of the conflict 
between the choice constructor "," and the independency relation: independent actions occurring in 
branches of the choice were mapped by Q to different components of the parallel construct II. Thus, 
we introduce synchronization guards which are in conflict with such actions. Synchronization guards 
will be inserted into alternatives and loops. Formally, let I be a class of synchronized p- 
concurrent regular expressions defined by the following grammar: 

expr ::=     el I el; el 
el      ::=    action I (A; expr)* I (expr) I alt        (A is called a synchronization guard) 
alt        ::=    expr, (A;expr) 

such that for i(a) = {j: a€ Aj} the following conditions are satisfied: 

. for each loop (A;expr)*    Vb€ Alpha(expr) (i(b) C i(A)) 

.  for each alternative (exprl, (A; expr))    Vb € (Alpha(exprl)U Alpha(expr))   (i(b) C i(A)) 
•  synchronization guards are unique 

Now, we define a transformation II from the set R of all p-concurrent regular expressions into 
Z. The mapping II inserts the synchronization actions as described above. Thus, the alphabet A of 
any expression from 2 is extended with a number of symbols from some alphabet SYNC, disjoint 
with A. 

Let us explain the conditions in the definition of the class Z. The first two of the above conditions 
state that synchronization guards are not independent with other actions in the same alternative, or 
loop. Note that synchronization guards are not necessarily dependent with all other actions. This is 
because we do not wish to limit concurrency by introducing synchronization guards, that is we 
require that the set of histories of the transformed expressions with synchronizing actions concealed 
should be identical to the set of histories of the original expression. For example, if 

PCR:     a;(b,c)       Ai={a}     A2 = {b,c} 
then the concurrency in the expression CR: ((a; (S,A))) I I ((b, (A; c)) ) , resulting from the 
expression 

n(PCR):    a; (b,   (A;c))        Ai = {a,A}       A2={b,c,A} 
would be unnecessarily limited; for example the sequence ca is a history of PCR but is not a history 
of CR. 

The reason the third condition above requires synchronization guards to be unique is explained by 
the following example: 
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PCR:a,b,c Ai = {a}, A2= {b}, A3 = {c} 
Here, the expression PCR1 with a non -unique synchronization guard is not proper 

II(PCR):a, (A;b), (A;c) Ai = {a,A}    A2= {b,A} A3 = {c,A} 
but, indeed, the expression II(PCR) with unique synchronization guards is proper: 

II(PCR):a, (Al;b), (A2;c)      Ai={a,Al,A2}   A2={b,Al,A2}    A3 = {c,A2}      ■ 

Theorem 1 
Every synchronized p-concurrent regular expression from the class Z is proper. 

Let XISYNC denotes the concealment of actions from SYNC. It can be proved that 
synchronization guards do not limit potential concurrency: 

Theorem 2 
For every concurrent regular expression R 

VFS(R) = VFS(II(R))ISYNC       and       RFVS(R) = RVFS(II(R)) I SYNC 

Therefore, for a specification S of a sequential system in the form of a p-concurrent regular 
expression (which can be obtained from a Banach program), we can first apply the transformation II 
to get a proper specification II(S), and then the transformation £, to get an equivalent concurrent 
specification C(II(S)). For example, for the expression 
PCR:     a,b,c,   Al = {a}     A2={b}   A3 - {c} 
we have II(R): a,(Al;b),(A2;c)      Al = {a,Al,A2}     A2 = {b,Al,A2}     A3 - {c,A2} 
and C(II(R)) is of the form: a,Al,A2 II S,(Al;b),A2 II S,8,(A2;c) 
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1    Introduction 

This paper is a preliminary version of the background material for the talk I will be pre- 
senting at the International Conference on Algebraic Methodology and Software Technology, 
Iowa City, Iowa, May 22-24 1989. 

For many years I have been working on algebraic/categorical methods for specifying 
various programming language constructs with particular emphasis on the specification of 
datatypes [10,9], and the specification of programming languages as-a-whole [5, 8, 6, 7,11]. 
In this paper I combine these interests, and present an algebraic/categorical specification 
of a language for specifying abstract data types. My interest goes beyond the specification 
of types to the more general topic of data-directed design. The key idea of data-directed 
design is that software design should be centered about the design of data types rather than 
about the design of procedures. I don't have the time, or space, here to present detailed 
arguments for data directed design, but Bertrand Meyer gives a good presentation of them 
in [2]. The basic argument is that a data directed approach supports such good things 
as maintainability, reusability, and understandability. The tools from data directed design 
that are used to realize these good things are such concepts as extensibility, encapsulation 
(information hiding), generic types, and inheritance. 

A data type is specified in my language by giving a "program" that implements it. Thus 
these specification are not algebraic specifications as defined in [10, 9]. Indeed, they are, 
what might be called, specifications-by-example. However, they are still abstract specifica- 
tions. The desired "abstraction" is achieved through encapsulating the programs so that 
one can only exploit WHAT the program does, and not HOW it does it. Needless to say, 
"encapsulating programs" is not a new idea, but what is new here is that we do it in a 
rigorous mathematical framework that permits analysis. 

The flavor of the language is close to that of many "object-oriented languages" such 
as SMALLTALK or EIFFEL. In particular, we follow SMALLTALK in using the terms 
"class", "object", and "method". Roughly speaking, a class is a data type, an object is an 
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instance of a data type, and a method is an operation on a data type. However, objects, 
in contrast to data types, have "memory" and this means that we are outside the familiar 
domain of algebraic specifications. On the other hand, we are not as close to SMALLTALK 
as our choice of terminology might suggest. 

• We do not have any built in types, not even BOOL. 

• We use a different form of objects. Most object-oriented languages define objects as 
being Records, that, as elements of products. We define objects as being as Variants 
over Records, that is, as elements of a sum of products (or, more precisely, as a 
coproduct of products in the category of sets). 

• We use a "method calling" paradigm rather than the message sending paradigm of 
SMALLTALK. But a method still belongs to a specific class. We permit a method 
belonging to a class k to access and/or modify the value of any its parameters or 
variables of class k. 

• Associated with each class k are Case, Assignment, and object creating operations 
that can only be used within methods belonging to k. 

Some of these differences will be motivated in more detail as we go along. For additional 
motivation see (or await) [11]. 

The outline of the paper is as follows: Section 2 gives an informal overview of the 
language. A very brief introduction into the algebraic specification of languages is provided 
in Section 3. Section 4 gives the syntax of the language. Section 5 defines the class of 
algebras used in the semantics which is then presented in Section 6. In Section 7 we give 
examples of the use of the language to define some familar data types. Section 8 takes a 
brief look at some of the issues I hope address more fully in my talk. 

Some notation: Given a set K, we write K* for the set of strings on K, and (K*)* for 
the set of strings-of-strings on K. We write A for the empty string in K*, and ( ) for the 
empty string in (K*)*. Given strings vi, ...,vn in K*, we write (vx) • • -(u„) to denote the 
string in (£"*)* whose ith element is ut-. Given a string u we write \u\ to denote the length 

of u. 

2    Informal Overview of the Language 

This section gives an informal overview of the language. The vocabulary used is close 
to that used by the SMALLTALK community. But I want to warn both programmers and 
mathematicians that words such as class, and object may not have the meaning they might 

expect. 
A program consists of a specification of a coUection K of classes. A class k consists of a 

specification of the form of the objects of k together with the coUection of methods belonging 
to k. An object in k is either, nilk, the nil object of k, or it is an instance of k. An instance 
of k has a value which is a tuple of objects. The form of k specifies which tuples may occur 
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as values of instances of objects from k. A method belonging to k is a specification of an 
operation on objects. The specification of a method a will specify the parameters of <r, the 
temporary variables used in <r, the expression describing the steps of <r, and the class of 
the result returned by a. The execution of a method of class k will, providing it terminates, 
return a result and may change the value of some of its parameters. 

For example, we can give a program specifying the classes: BOOL, NAT, INT, 
STACK-OF-INT. The form an object of class STACK-OF-INT could specify 
that an instance of object of STACK-OF-INT will have a value that is either an 
empty tuple ( ), or a pair (S,I) where S is an object of class STACK-OF-INT 
and I is an object of class INT. The intuition is that a STACK-OF-INT is either 
empty or it consists of a top element I and a "substack", S, corresponding to 
the remainder of the stack. The class STACK-OF-INT would have methods 
for operations such as POP, PUSH, and MAKE-EMPTY-STACK. The method 
for POP would specify that it has a STACK-OF-INT as parameter, and that it 
returns an object of class INT. This example is worked out in detail in section 7 

The form of a class k restricts the values of instances to a given sum of products of the 
sets of objects of specified classes. The form of a class is fixed but the specific sets will 
change with time - in effect, objects do not come into existence until they are needed. 

In the example of STACK-OF-INT the form will restrict the values to the set 
(1 4- (0stack X Oint)) where 1 denotes the product of the empty set of sets (the 
one-element set containing the empty tuple ( )), Ostack is the set of objects of 
class STACK-OF-INT, and 0int denotes the set of objects of class INT. 

The expression specifying the steps of a method a, belonging to class k, is built from 
primitive operations together with the parameters and temporary variables of a. The desired 
encapsulation of classes is achieved by restricting the writing of methods so that knowledge 
of the form of a class k can only be exploited within methods belonging to the class k. 
For each class k, we use the form of k to define a set of basic operations that can only be 
used within expressions specifying methods belonging to k. Briefly, for each class k we have 
private operations: 

NEW(Jfe, i), an operation that creates a new instance of an object of class k with value the 
all-mi tuple for summand i. 

CASE(e0, ei,..., en), a case statement with a case for each of the n summands of k. If the 
expression e0 evaluates to a tuple in the ith summand of k then the expression et- is 
evaluated. 

CHANGE(e0,*\ei,...,e„), an operation for changing the value of an object of class k. 
Changes the value of the object of class k resulting from the evaluation of the ex- 
pression e0 to the n-tuple for summand i resulting from evaluating the expressions 

e\,..., en. 
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ACCESS(e0,t',i) , an operation for accessing components of objects of class k. The opera- 
tion returns the jth component of the ith summand of the object of class k resulting 
from evaluating the expression eo. 

In addition there are the following public operations that can be used in any method of 

any class. 

NILfc a constant, denoting the nil object of class k - note that the nil objects are typed. 

INST(e0, ei, e2), a conditional operation, evaluates expression e0 to get an object x of class 
Jfe, then evaluates ei if x is an instance of k, but evaluates e3 if x is the nil object of k. 

ASSIGN(i, e0), e0 evaluates to an object of class k which is assigned to the ith temporary 
variable of class k. 

e\\e2, an operation for composing the evaluations of expressions. 

CALL(p, ei,..., en), an operation for calling methods of other classes. Method p is called 
and passed, as parameters, the objects resulting from evaluating the expressions 
d,...,en. A method belonging to a class k can only access, or change, the value 
of objects of a class k' £ k by calling methods belonging to k'. 

The syntax given in section 4 ensures that the applications of these operations are 

well-defined. 

To define the methods POP and PUSH for STACK-OF-INT we can use the 
NEW, CASE and CHANGE operations corresponding to the form of STACK-OF-INT. 
The NEW operation for STACK-OF-INT can be used to create either the empty 
STACK-OF-INT corresponding to the empty-tuple ( ), or to produce a pair 
(nilstack, nilint), the latter operation is not of any interest in this example. The 
CASE operation for STACK-OF-INT, has two cases, corresponding intuitively to 
empty-stack and non-empty stack. The CHANGE operation for STACK-OF-INT, 
allows us to change the value a STACK-OF-INT object as required by the POP 

and PUSH methods. 

3    Algebraic Specifications of Languages 

As mentioned in the introduction, I have been working on algebraic/categorical methods 
for specifying the design of imperative programming languages. The idea is to provide a 
framework for language design that is simultaneously operational, abstract, and prescrip- 
tive. By operational I mean that I can talk about executions of programs, and about 
operations such as declaring variables, creating pointers, assigning values, etc. By "ab- 
stract" I mean that I can describe "what" happens without saying just "how" it is done - 
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for example, I can talk about "declaring variables" or "creating pointers" without giving 
an overly specific implementation of this within some "machine". By "prescriptive" I mean 
that the framework naturally promotes good design and understanding of good design. 

Some underlying ideas of this approach are 

• to model the execution of a program in terms of state transitions where the states 
are algebras and represent not just "the memory" but also include "the currently 
declared" types, variables, pointers, constants, etc. 

• that the basic operations on states should be natural categorical operations on the al- 
gebras and/or their signatures. For example, as shown in [6], declarations of variables, 
pointers, and data types, can all be described in terms of pushouts in an appropriate 
category of algebras. 

• that records and variants are key concepts, that they correspond to products and 
coproducts and that their associated morphisms (projections, injections, and medi- 
ators) correspond to important programming concepts. For example, the mediating 
morphism for a coproduct representing a variant correspond to the case statements 
(or case expressions) used for type-safe access to the variant. 

We use this approach in this paper, but, by and large, we avoid explicit mention of the 
categorical constructions, and present the semantic constructions without discussing the 
mathematical motivations behind them. However, examination will reveal that the defini- 
tions INST, NEW, CASE, CHANGE and ACCESS operations exploit the available categorical 
structure, sometimes at several levels. 

Section4 gives the syntax of the language. The syntax, as given, is not very user friendly, 
so we follow it by some informal sugaring which we employ in the examples in Section 7. In 
Section 5 we describe the algebras that axe used to describe the states. Finally, in Section 6 
we describe the operations on the state-algebras that give the semantics of the language. 

4    Abstract Syntax 

A specification of classes consists of the following data: 

K, a set (of class names). 

S, a set (of method names). 

a : S -*■ K X K* X K. If a € 2, and a{o) = (k,u,t) then a belongs to the class k, has \u\ 
arguments where the ith argument is of class u,-, and a returns a value of class t. 

t : K -> (K*)*. If i(k) = vi---vn € (K*)m with v; = v,-,i • • • v,-,„. G K*, then the class 
k is at form i(k), has n summands the jth of which, for j G {l,...,n} having nj 
components the ith of which, for t e {1,..., n,-}, being of class Vjfi. 
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r : S -+ K*. If r(a) = w, then the method a has \w\ temporaries (local variables), the ith 
of which is of class to,-. 

f : S -*Expr. Where f (a) is body-expression of the method o\ We call iJapr the sei 
o/ expressions. If a(a) = {h,u,k) then f(cr) 6 Expr^a, the set of k-a-expressions, 
denned as follows: 

NILjt is a fc-<r-expression. 

P^,- is a &-<r-expression if a{a) = {h,w,t) and i e {l,...,\w\} such that wt - k. 

lCti is a fc-(r-expression if i G {1,..., |r(<r)|} such that r(o-)t- = k. 

ei Je2 is a &-<r-expression if e\ is a j-<r-expression for some j G K, and e2 is a &-<7-expression. 

INST(e0,ei,e2) is a fc-cr-expression if eQ is a j-<7-expression for some j G üf, and if e\ and 
e2 are fc-<r-expressions. 

ASSIGN(i, ei) is a &-<r-expression if i G {1,..., |r(<r)|}, r(<r),- = k, and ex is a fc-cr-expression. 

CALL(/>, ei,..., ep) is a fc-a-expression if p G E, and there exist A and u such that a(p) = 
(h,u,k), and, where « = «i'-"Up, we have that e,- is a «,-<r-expression for each 

ie{i,...,p}. 

NEW(fc, i) is a fc-a-expression if i G {1,. ..,\i(k)\], and <r belongs to k. 

CASE(e0,ei,.. .,en) is a Jfe-<r-expression if, where a{tr) = (j,u,h), there exists j G K such 
that Co is a j-<r-expression, n =|t(j)|, and, for each i = 1,.. .n, e,- is a fc-cr-expression. 
Note that, here, <T belongs to j but returns a k object. 

CHANGE(e0,i,ei,...,ep) is a fc-<r-expression if e0 is a fc-<r-expression, there exist u and h 
such that a(a) = {&,«, &), so a belongs to k, and, where i(k) = «i • • -vn G (A"*)*, we 
have» € {l,...,n}, p =|vt|, and, v,- = v,-,i • • • v,-,p where, for each j G {l,...,p}, ej is 
a v<j-<r-expression. 

ACCESS(e0, i,j) is a fc-a-expression if e0 is a &-<7-expression, there exist u and /i such that 
a(a) = (/*,«,&), and, where t(k) = vx •••*;„ G (#*)*> we have i G {l,...,n}, and, 
where t\- = v,-,i • • • v,-,p, that J G {1,...,p} and Vj = k. 

The above formal syntax is too formal for convenient use, and it is advantageous to use 
more suggestive, and compact, notation. 

Pi for P«,,,- (that is, for example, P4 for P<r,4) 
Ti for TV,,- 
Ti:= ei for ASSIGN(i, ex) 
p(ei,...,ep) for CALL(p,ei,.. .,ep) 
e0.i<-(ei,...,eP) for CHAHGE(e0,*,(ei,...,ep» 
e0.i.j for ACCESS(e0,i,j). 
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It will frequently be the case that we want to do a PCHANGE operation such as 

Pm.i*- ( Pm.i.l,.. .,Pm.i.(j-l), ejf Pm.i.(j+1),.. .,Pm.i.p ) 

where "only the jth component of Pm.i is changed", we will write this as 

Pm.i.j *- ej. 

While this is convenient notation, it is possible to misuse it and write something meaningless. 
The formal syntax is the real syntax. 

Not surprisingly, it will also be convenient to present the data for a class-collection in 
a more informal manner. We will not attempt to explain these informalities but leave the 
reader to deduce them from the examples. 

5    State Algebras 

Given a specification T = (K,!l,a,L,T,£) we want to define the set of many-sorted 
algebras corresponding to the possible states resulting from executing the methods given 
for the classes. 

We start by denning the collection of T-signatures corresponding to the data T. A T- 
signature (5, ft) will contain a designated sort 1, and, if k G K, with t(k) = vx • • • vn G (K*)* 
and V{ = fct-,i • ••kifPi G K* then k will contribute n + 4 elements to the sort set S, namely 
Vk,i, •.., Vk,n, Sk,h, Ok, and Tk. Think of Vk,i as the ith sort of instance variables for k, Sk 
as the sort of summands for k, Ik as the sort of instances ofk,Ok as the sort of objects of k, 
and Tk as the sort of temporary variables of k. These sorts come equipped with operations: 

m'/fc : 1 -+ Ok rk:Tk-*Ok nk:Ik->-Ok 
Hk'h-* Sk tk,i' Vk,i -* Sk, i = 1, •.., n 
ir*Ai = Vk,i -f Okij,ie {l,...,n},j G {1,...,#}. 

In addition, ft may contain a finite set of constants of sorts Ok and Tk for each k £ K. 
We can represent this signature pictorially as shown in Figure 1. See Section 7 for 

pictures of some actual signatures. 
A T-state-algebra (or T-algebra), A, will be a (5, ft)-algebra, for some T-signature (S, ft), 

where Ai is a designated singleton set also denoted 1, and for each k G K, as above, 

Ac»* = A/fc + Ai, a coproduct of these sets in Set, the category of sets and 
total functions, with coproduct injections (KJOA 

an^ {n^k)x- 

For each i G {l,...,n}, AyM = Aofcjl x ••• x Aofc.p., a product of these 

sets in Set, with product projections (vk,i,i)A through (**,,><)A- 
If' where 

i(k) = (vi)---(vi)---(vn) we have v,- = A, the empty string, then we take 

AvKi = 1. 
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*"*,!. 

Tk,n,pn 

Figure 1: The k-component of a T-signature 

Ash - Avhtl + •-• + A.vhrn, a coproduct of these 

sets in Set, with coproduct injections (tjt,i)A through (tjt,n)A- 

Arfc will be exactly the set of constants of sort T*. 

We do not put any restrictions on A/„, (n,)^, or (fik)A, other than that the functions 
be functions. 

Let A be a state algebra, then the ideas behind the above definition of state-algebra are 
as follows: 

• An object of class k in A, that is, an element of Aok, is either the nil-object given 
by nilk or it is an instance of k, that is, an element of A/„. This is just what the 
coproduct says. 

• Each instance of an object of class k has a value. In particular, if x G A/fc then its 
value is (H)A(X) e ASk = Avw + • ■ • + Avfc,n, which is a sum of products of objects. 

• Each element y of Ark corresponds to a temporary variable with value (r)A(y), an 
object of class k. 

6    Abstract Operational Semantics 

Given the class specification T  =  (K, S, a, i, T, £), and given a € S with a(o) = (j, u, h) 
then a a-state algebra (over I) is a T-state algebra A whose signature (S, SI) contains at 
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least the constant symbols P<r,i,« ■ •»^a.M» corresponding to the parameters of <r, together 
with the constant symbols Ta,i,... ,Ta,\T(ff)\, corresponding to the local variables for a. In 
practice we axe only interested in cr-state algebras with finite carriers, and generated by 
repeated "applications of body-expressions". From this we can, but won't, show that that 
the a-state algebras of interest form a set, Alg9, rather than a proper class. 

When a Ar-(T-expression e is applied to a <r-state-algebra A, the result, if any, will be a 
pair [eJ^A) = {B,b) where B is a a-state-algebra B and 6 is an element of Bok- Let RESC 

denote the set of all pairs (A, a) such that A € Alga and a G Aok. Then we can regard [e], 
as a partial function, 

[e], : Alga -*■ RES„. 

Let A G A/&,-algebra with signature (5,H), then fe]<r(A) is denned by the appropriate 
entry from the following list. 

NIL* : Define [NILfcJ^A) = {A,(nilk)A). 

?a,i: Define [P„,,-]«r(A) = (A, (P,,,-)A). 

T,,<: Define \^AM) = (M^)A)- 

ei]e2 : Define [«i;«a]ff(A) = [e2]<r((Iei]<,(A))i). 

INST(eo,ci,C2): If eo is a 2-<7-expression and [e0l<r(A) = (C,c), then define 

r«,«,^ \t f A\      J leil<r(C)   if c^nilz [INST(e0, «i, e2)UA) = j ^j^   if c = n</-. 

ASSIGNC^Ci) : If [ci]<,(A) = <B,6) then [ASSIGN(i\ei)]ff(A) = (C,b) where C is identical 
to i? with the exception that (Tk)c((T<r,i)c) = b. 

CALL(p,ei,...,ep) : Let (5i,&i) = [ei]«r(A), and, for* = 2,...,p,let <P,-,6,) = [e,-]«r(.S.--i). 
Then, where a(p) = {&,«;,&) and r(/>) = « extend the signature (5,fi) by adding 
constant symbols PPi,-, i = 1,..., |io| and Tpj, j = 1,..., \u\, and let B be the extension 
of Bp such that (P„,,)s = &,• for each i = 1,..., |io|, and, (rUi)B(rPj) = nilUj, for each 
j = 1,..., |u|. Then, where f(p) = e, {C,c) = [e]p(P), and £ is the <S,fi)-reduct of 
C, define [CALL(p, ei,..., ep)]„(A) = <£, c). 

NEW(Jfe,i) : Let B be the <r-state-algebra that results from freely adjoining an element 
x to Aik and, where i(k) = «i---vn and v; = v»,i • • • ^,P G K*, taking {pk)B to 
be the extension of (pk)A taking x to b = (tfc,jU((m'^;,i' • ■ •>

7
"'*«'.P))- 

Tlien define 

[NEW(fc,i)L(A) = (5,6). 

CASE(e0,ei,...,e?) : If e0 is a z-<7-expression, where a(z) = w\ •••wq, and [e0]<7(A) = 
(C,c), then define 

' (C,(n«7,)c>   if c = (nilz)c 

[CASE(e0, ex,..., e,)|(7(A) = <   [ct-]ff(C)        if there exist x and y such that 
I c = (Kz)c(aO and (ß2)c(x) = (h,i)c(y)- 
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CHANGE(eo,«\ei»•••»«*) : Let (-Bo,&o> = [e0]<r(A), and, for i = l,...,plet (Bub) = 
laMBi-i). Then [CHAHGE(eoft,ei,...,ep)],(A) = <C,60> where C is identical to 
BP except that if bQ is an instance of k, so bQ = («fc)B,(«) for some x E (Bp)ik, then 

(/■Ufc)c(x) = (t,)s„((6i,.. •, 6p». 

ACCESS(c0,i, j): Let [eo],(A) = (5,6), if there exists x € A/fc such that b = (Kfc)>i(x) and 
{ßkU(x) = (tf)A((ax.-...ap)), t^en [PACCESS(e0,i, j)l<r(A) = (A,a,), otherwise 

[PACCESS(eo,i,i)]<r(A) = (A,IM7A>. 

The above presentation of the semantics is a mite informal in that it assumes that, 
for each Jfc-<r-expression e and T-algebra A, A C ([eJ(A))i in some sense that makes it 
meaningful to talk of an object in x € Aok as also being an object in (([e](A))i)cv A more 
precise treatment would require introducing generalized injective homomorphisms. 

7    Examples of Class Specifications 

In this section we give a number of examples of class specifications using the sugared 
version of the syntax. Each specification builds on the ones given before. The specifications 
are fairly straight forward, but generally represent very inefficient implementations. For 
example, in the specification of BOOL the reader will see that each application of the 
"constant operation" true generates a new object. 

Example 1 Here is a specification for the class BOOL. The only surprise here may be the 
operation null. This operation is needed because the CASE operation, which distinguishes 
true from false, can not used outside of the BOOL class. The operation null can be used 
together with the primitive operation INST to give us a general BOOLean conditional usable 
in methods of any class. The signature diagram for BOOL is shown in Figure 2. 

CLASS BOOL 
form 

i(BOOL) = (A)(A) 

methods 
true( y.BOOL 

THEM (BOOL, 1). 

false():BOOL 
VEM(BOOL, 2). 

and(?l, ?2:BOOL):BOOL 
CASEffi, CASE(fc2, true, false), false). 
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Figure 2: The Signature for BOOL 

not( ?l:BOOL):BOOL 
CkSE(Pl, false, true). 

null(?l:BOOL):BOOL 
CASEf Pi, true, KTLBOOL)- 

end - class BOOL 

Example 2 Here is a specification for the class NAT of natural numbers. This is an 
example of a "recursive class" in the sense that NAT appears in the specification of the 
form of NAT. In general, a state algebra for NAT will contain only a subset of the natural 
numbers. As examination of the methods will show, "NATa are only produced as needed". 

CLASS NAT 
form 

t(NAT)= (X)(NAT) 

methods 
zero():NAT 

mw(NAT, 1). 

succ(?l:NAT):NAT 
(T(SUCC) =T1:NAT) 
Tl:=KZ\t(NAT, 2))T1.2*- (Pi). 

pred(?l:NAT):NAT 
CASEfPi, NILJVAT, Pl.1.1 )■ 
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add(?l, P2:NAT):NAT 
CASEfPS, Pi, add( succ(Pl), pred(P2))). 

subt(Pl,P2:NAT):NAT 
CkSE(P2, Pi, minus( pred(Pl), pred(P2))). 

eq(Pl, ?2:NAT):NAT 
CASEfPi, CASE(?2, true, false), CkSE(?2, false, eq(pred(Pl), pred(P2) ) ). 

le(?l, ?2:NAT):NAT 
CASEfPi, CASEfPS, true, false), le( pred(Pl), pred(P2) ) ). 

end - class NAT 

Example 3 As our next example we give a specification for the class INT of integers. This 
specification provides an a nice example of encapsulation. From looking at the names of 
the methods one would expect that an integer z is being represented as a pair consisting of 
a BOOLean, representing the sign of z, and a NATural number, representing the absolute 
value of s. But the specification, actually, represents an integer z by a pair, (n,p), of natural 
numbers such that if n > p then z = m-p, while if n < p then z = - ]p - n\. 

CLASS INT 
form 

i(INT) = (NAT-NAT) 

methods 
one():INT 

(r(one) = 1UINT) 
T:= NEW (INT, 1 )]T.l.l.*-succ (zero)]!. 1.2<r- zero. 

abs(Pl:INT):NAT 
UST( null(le(P 1.1.1, Pl.1.2)), subt(P1.1.2, Pl.1.1), subt(Pl.l.l, Pl.1.2) ). 

sign(Pl:INT):BOOL 
INSTf null(le(P 1.1.1, Pl.1.2)), false, true). 

sum(Pl,P2:INT):INT 
(T(SUTTI) = Tl-.INT) 
11 :=NEW(WT, l)]Tl.l.l*-add( Pl.1.1, P2.1.1)]T1.1.2*-add( Pl.1.2, P2.1.2) )\T1 

neg(Pl:INT):INT 
(r(neg) = T1:INT) 
11 := KEU(INT, 1)\11.1.1*-P1.1.2\T1.1.2*-P1.1.1\11. 
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Figure 3: The Signature for STACK(D) 

eqint(?l, ?2:INT):B00L 
eq( add(Pl.l.l, tP2.1.2), add(91.1.2, P2.1.2)). 

end - class INT 

Example 4 Here is the "classic example" of a data type specification, STACK(D), here 
presented as a generic class, that is, D is a formal parameter that may be "passed" any actual 
parameter such as BOOL, NAT, or INT. In this paper we will not go into the mathematics 
of "how parameters are passed" - essentially we use the familiar pushout construction 
from the theory of data types. Informally, all we have to do is "rewrite" the specification 
with D replaced by the name of the desired actual parameter. The signature diagram for 
STACK(DJ) is shown in Figure 3. 

CLASS STACK(D) = STACK-OF-D 
form 

L(STACK(D)) = (\)(STACK(D)-D) 

methods 
pop(?l:STACK(D)):D 

(r(pop) = Tl:D) 
CASEfPi, Ti:=NILo, (Tl:=P1.2.2]CkSE(P 1.2.1, 

P1.2+- ((P1.2.1).2.1, (P1.2.1).2.2)j; 
71. 

push(?l:STACK(D), P2:D ):D 
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(r(push) = T1:STACK(D)) 
71:=mi(STACK(D), 2)\ 
CASE (Pi, 

Tl.l*- (>, 
11.2 <- {Pl.2.1, Pl.2.2))', 

P1.2<-(11,P2)\ 
?2. 

make( ):STACK(D) 
(T(make) = 11:STACK(D)) 
11:=XEU(STACK(D), 1). 

empty?( P1:STACK(D)):B00L 
CASE( Pi, true, false). 

end - class STACK(D) 

Example 5 Our next specification is for DOUBLE-LINKS-OF-D, or 2LINK(D) - the 
"links" used to make types such as doubly-linked lists, and used below to specify FINITE- 
SETS-OF-D. One can think of an instance x of a 2LINK(D) object as having a value which 
is a triple {I ft, rgt, val) where I ft and rgt are 2LINK(D) objects and val is an object of 
class D. Informally, we think of I ft as being to the left of x, and rgt as being to the right of 
x. These leads naturally to the the idea of a doubly-linked-list - a chain of 2LINK(D)s with 
niTs at the two ends, but 2LINK(D) can also be used to construct many other structures. 

This class is again an example of a class that is both recursive and generic. In contrast to 
our other examples, this class is quite ill-behaved in that we can have complex structures of 
links with very complex aliasing. This complexity is largely hidden in this specification in as 
much as the choice of names for the methods only suggest the doubly-linked list application. 

CLASS 2LINK(D) = DOUBLE-LINKS-OF-D 
form 

i(2LINK(D)) = (2LINK(D)-2LINK(D)-D) 

methods 
left(Pl:2LINK(D) ):2LINK(D) 

INSTfPl.i.i, Pl.1.1, PI ). 

right(Pl:2LINK(D) ):2LINK(D) 
INST(P1.1.2, PI.1.2, PI ). 

addlefl(Pl:2LINK(D), P2:D ):2LINK(D) 
(T(addleft) = ll-.LINK(D)) 
11:=1&m(2LINK(D), 1)] 
INST (Pi, 
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UST(P 1.1.1, 
T1.1*-{P1.1.1,P1,P2)](P1.1.1).1.2*-T1]P1.1.1*-T1, 
ii.i*- (^IL2LINK{D),PI,P2)]PI.I.I*-TI ;; 

71.1*- (UIl>2LINK(D), NIL2i/iVA-(£>)5 P2);. 

addright( P1:2LINK(D), P2:D ):2LINK(D) 
left to the reader 

write(Pl:2LINK(D), ?2:D):D 
P1.1.3*-P2. 

leftend?(Pl:2LINK(D) ):BOOL 
INST/PI, NILBOOL, INSTfP 1.1.1, false, true ) ). 

rightend?(Pl:2LINK(D) ):BOOL 
left to the reader 

drop( ?1:2LINK(D) ):2LINK(D) 
INSTf null(leftend?(Pl )), 

INSTf null(rightend?(Pl)), HTL2LINK(D), (right(Pl)).1.2*-TXlL2LINK{D)), 
INST/ null(rightend?( PI)), 

(left(Pl)).1.2*-XIL2LlNK{D), 
(right(Pl)).l.l*-left(Pl);(left(Pl)).1.2*-right(Pl) ). 

Finally, assuming D has an "equality method", eqD(Pl. P2:D ):BOOL, then 

isin?(Pl:D, P2:2LINK(D) ):BOOL 
(r(isin?) = 1UBOOL) 
VSSZ(P2, 

UST(null(eqD(P2.1.3, PI), true, isin?(Pl, P2.1.2) ), 
false). 

end - class 2LINK(D) 

Example 6 As our final example we give a specification for the generic class FINITE- 
SETS-OF-D. The specification makes use of the class 2LINK(D) but the 2LINK(D)s gener- 
ated by the methods in SET(D) are encapsulated in the sense that there is no way "to get 
at them" except through the methods of SET(D). Note that this generic specification makes 
use of the isin? method of 2LINK(D) and thus requires that D has an "equality method" 
eqD. The idea behind this specification is that we can represent a set s as a "string" of 
its elements, and that we can represent the string as a chain of 2LINK(D). In the actual 
specification the form of SET-OF-D is given as a triple, (Li, L2, L3) of 2LINK(D) objects. 
Inspection of the methods should show that, in a string s representing a set S, L\ marks 
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the beginning of s, X3 marks the end of s, and L2 is used, when necessary, to traverse s, 
but is always returned to the beginning of s at the end of a method. 

CLASS SET(D) = FINITE-SETS-OF-D 
form 

i(SET(D)) = ( 2LINK(D)-2LINK(D)-2LINK(D) ) 

methods 
make( ):SET(D) 

(r(make) = T1:SET(D)) 
•n:=r^(SET)D), 1). 

elemof?(11:D, 12:SET(D) ):BOOL 
(r(eIemof?) = Tl:BOOL) 
Tl:= isin?(11, 12.1.2)\12.1.2^-12.1.1\11. 

addelem( ?1:D, 12:SET(D) ):SET(D) 
UST(null(elemof?(11, 12)), 

P2<r- ( ?2.1.1, 12.1.2, (addright(12.1.3, 11)\Hght(92.1.S)) ) ). 

delelem(11:D, 12:SET(D) ):SET(D) 
(r(delelem) = T1:2LINK(D)) 
INSTY null(isin?(11, 12.1.2)), 

Tl:=drop(ll, 12.1.2)]IHST( null(leftend?(P2.1.2)), 
P2^(T1,T1,T1>, 
1.1.2^-11.1 ), 

12.1.2^-12.1.1 ). 
end - class SET(D) 

8    Looking Forward 

This paper has concentrated on giving a description of a particular language for data 
driven design and on showing some simple examples of what can be done with it. But the 
real reason for developing the language was, and is, to use it as a well denned framework 
in which to investigate various aspects of data driven design. I am not ready, at present, 
to make any major pronouncements on data driven design, but the following remarks, and 

questions, may be of interest. 
While you may not be completely happy with the way I have worked out the examples 

in Section 7 you will probably agree that most, if not all, of them are correct. But what does 
this mean? Intuitively, it means that the denned classes have the external behavior that we 
expect. What is "external behavior"? I think that, loosely speaking, external behavior is 
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what we can observe by doing experiments consisting applying expressions built up using 
the "public" operations INST, NIL, ASSIGN, CALL and ;. This is trickier than it might sound 
since essentially all we can observe as the result of an experiment is whether or not the 
result is a nil object. The idea is that the "experiments" should provide a way to identify 
appropriate states and/or objects so that the resulting congruence classes correspond to the 
elements of the desired abstract type. It seems fairly easy to make this precise in a manner 
that will work for at least BOOL, NAT, STACK-OF-D, and FINITE-SET-OF-D. However, 
we can take the specification given for FINITE-SET-OF-D, rename it NON-REPEATING- 
STRING-OF-D, and informally interpret the objects as strings of elements of D in which no 
element is repeated. This is fine intuitively, but the above notion of external behavior is too 
strong as it identifies strings that are not the same under this new interpretation. However, 
interpretation not withstanding, any application of NON-REPEATING-STRING-OF-Dwe 
can replace it by FINITE-SET-OF-D and never know the difference. Still, it would appear 
that the meaning of a class involves intention as well as extension. At the very least it 
means that we can not necessarily grasp the intention behind a class specification just from 
the formal specification. 

An aspect of object-oriented programming that receives a great deal of attention is the 
notion of "inheritance". This is a "concept" with many definitions, some of which seem to 
be incompatible. The version I want to address is roughly the intersection of the versions 
found in [3] and [2], to quote from [3]: 

"Inheritance is a technique that allows new classes to be built on top of older, less 
specialized classes rather than written from scratch. The new class is the sub- 
class; the old one is the superclass. The subclass inherits the instance variables 
and methods of the superclass. The subclass can add new instance variables 
and methods of its own." 

To put this into the framework of our language we need only replace the first occurrence 
of the phase "instance variables" by the phrase "form t", and replace the phase "add new 
instance variables" by a phrase describing some suitable notion of extending the form. The 
question of what is suitable notion can wait until another day, what is important is that this 
is an implementation concept in the sense that the new class, k', is defined starting from 
the specification (a(fc),t(fc),f(fc)) of the old class k, rather being defined from the external 
behavior of k. 

The fact that "inheritance" works at the implementation level results in some confusions 
at the interpretation level. We can easily take the class FINITE-SET-OF-D and add a 
method for a pick operation which, when applied to a "set" s, returns "the oldest element 
of s" - we just return the right-most element of D in the "string" representing s. I claim that 
the resulting class is constructed in accordance with the directions given in the above quote, 
and is thus technically a "subclass" of FINITE-SET-OF-D. Now it seems wrong, from a 
mathematical point of view, to say that the result is a specialization of the mathematical 
concept of finite sets of elements of D. However, there is no problem with viewing the 
resulting class is a specialization, or extension, of the class NON-REPEATING-STRING- 
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OF-D. This suggests that there are important semantic elements in inheritance that need 
further investigation. 

It is worthwhile considering if there are other ways to "reuse code", that do not lead 
to such semantic problems. Certainly we can extend a class by adding methods that are 
denned in terms of existing methods by means analogous to the construction of derived 
operators in universal algebra. But can we do better than this? I think we can. 

In Section 7, our examples are developed sequentially. That is, there are no mutually 
recursive specifications. However, it is certainly possible to write such specifications in our 
language. For example the definition of the class STACK-OF-D could be broken into two 
separate class definitions 5 = STA CK and N = NON-EMPTY-STACK where, L(S) = ()(N) 
and i(N) = (5 • D). Are such specifications needed or useful? 

Ill present some answers, and more questions, in my talk. 
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1    Introduction 

Software Engineering aims to improve our ability to develop and maintain provably correct, 
adaptable, and efficient software. Initial attempts to provide this improvement were based 
on the software development process known as the software life-cycle. 

Indeed, software engineering has matured to the point where some of its fundamental 
premises should be re-examined. In particular, the traditional view of the "software life- 
cycle" has been recognised as inadequate when considered with automated environments 
based on "rapid prototyping" or "knowledged-based development" or the transformation 
paradigm [Wil86a,ICS87,Hen89,Rat88b,Rat88c,Rat89b]. 

Further, in any traditional engineering discipline, re-usability (of components, designs, 
manufacturing processes, ...) is of fundamental importance. In software engineering, we 
are just beginning to understand this idea, but before we can incorporate it into our soft- 
ware practices we must understand the process of software development. To do this we 
must understand both the constituents of the development process, and the total process 
itself. The common approaches to software re-usability are well-illustrated by work involv- 
ing a re-usability of system components (in the form of libraries, etc [Hor84]), abstract data 
types [Emb87,Gog86], and specification [Gau88]. Software re-use can be identified with 
the productive re-use of software design and development in the planning, construction, 
and verification of software systems; a knowledge-based model for this form of software 
process re-use is described in Rattray et al [Rat89b]. 

A number of approaches to the study of the software process [Wil86a,ICS87,Hen89] 
have been suggested. Typical is that of Osterweil [Ost87] where the view is put forward 
that software processes can be described by "programming" them in much the same way 
as computer applications are programmed. A criticism of this by Lehman [Leh87] is that 
a process program is essentially procedural and only has merit if the problem domain is 
known and well-understood, if the strategies and algorithms for achieving the desired goals 
are known, and if the managerial and administrative practices are clearly defined. 

Similar criticisms can be levelled at other attempts to describe software processes and 
so the need to develop (mathematical) models or meta-models of the software process 
has become essential. Dowson [Dow86] gives reasonable definitions for "software process", 
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"software process meta-modeF and "software process model"; Wileden [Wil86b], for in- 
stance, provides a possible meta-model which agrees with Dowson's definitions. None of the 
models available seem appropriate. They lack precision, comprehensiveness, consistency, 
and an adequate theoretical basis, and most importantly the notion of variable structure 
[Zei89]. These difficulties are all overcome by a formal (meta-)model, evolutionary and 
hierarchical in nature and based on a re-interpretation of elementary categorical algebra, 
developed by Rattray [Rat88b] and Rattray and Price [Rat89a]. This model provides a 
suitable framework within which to consider software process development and re-use. 

Within this evolving hierarchical framework, systems have an internal organisation 
consisting of components with interrelations; their organisation is maintained in time even 
though their components are changing; their components are divided on levels correspond- 
ing to the increasing complexity of their own organisation. The state of a system at any 
given time is modelled by a category, the state transition by a functor, a complex compo- 
nent by the (inductive) limit of a pattern of linked components. Categorical constructions 
describe the stepwise formation of a system, by means of operations: absorption of exter- 
nal components from the environment, destruction of some components, formation of new 
complex components. By defining the notion of a mapping (morphism), compatible with 
the evolving hierarchical structure, between frameworks it is possible to compare software 
development processes. 

In many situations, software maintenance for example, our knowledge of the software 
product may not be complete (lack of documentation, change of personnel, etc). Informa- 
tion to and from the software system may then be supposed to be conveyed through limited 
parts of it called "actors", dynamically interacting with the system. Each actor has only 
partial information of the system. For each actor, we can construct a category, its "field 
of vision", which contains the fragments of the software system available to it; these fields 
are connected via "communication" functors. From this, we can deduce a representation 
of the totality of fragments attainable through the actors. For the outside observer the 
actors' view need not be a faithful representation of the actual software system and the 
difference is measured by a "distortion" functor. The actual system may be subject to 
modifications outside the scope of the actors. The difference between the software system 
as "anticipated" by the actors and the system after external modification can be mea- 
sured by a comparison functor; the measurement represented by the comparison functor 
is available at the level of the actors and indicates how to reduce the difference. 

In this paper, we review the framework, which has its origin in the biological sciences 
[Ehr85,Ehr86], as a vehicle in which to consider models of the software process. Using 
the kinds of measurements mentioned above we illustrate how it is possible to devise 
construction strategies for building complex systems or understanding existing software 
products. As an application of the evolutionary hierarchical framework, we indicate how 
the model may be helpful in understanding software re-usability by considering this from 
the point of view of re-usability of software processes [Rat88a]. The same framework is 
being developed to provide the underlying model for the design of a practical experimental 
program design environment [Rat89a]. 
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2    Elements of a Meta-Model 

"A system is a set of units with relationships among them* [Ber56]. The notion of a 
category matches well with this description whereby the objects of the category model the 
system units and the arrows of the category model the system relationships. Graphical 
descriptions of system models from which the software is generated are equally common. 
Typically, SADT1 (Structured Analysis and Design Technique [Mar87]) uses hierarchies of 
directed graphs the nodes of which have a particular form. Each node is an abstraction 
(complex component) the internal organisation of which is described by a directed graph. 

2.1    Complex Components 

A pattern is a graph morphism P : G —► K from a graph G to a graph K. Graph G 
prescribes the shape of the diagram and may be viewed as a sketch (a prototype) of a 
system's structure, ie pattern P defines a pattern of linked (related) objects in K. 

Suppose K is a category of such objects and P is a pattern of objects in K, whose 
prototype is G. The object Pit indexed by the node * of the prototype is called a component 
o/K; the image P(a) of an arrow a of the prototype is a specific link between components. 
Such a specific link indicates a relationship between the objects, eg a form of module 
coupling, a data flow, file transfer, network link, a dependency relation,  

The key notion in developing complex components of any software system lies in the 
need to ensure that system changes have only a localised effect. Essentially, the complex 
component has a certain external behaviour, determined by its internal organisation and 
function which is unknown and unavailable to the environment of the component. Thus, 
internal changes to the component which preserve the external behaviour will have no 
adverse effects on the environment .This localisation property is known as "information 
hiding" [Par72]. 

The idea of stepping back from the detailed internal behaviour of a component so 
that our understanding of the component is determined by its external behaviour is called 
abstraction. An excellent definition [Weg76], due to Wegner, says 

An abstraction of an object is a characterisation of the object by a subset of 
its attributes If the attribute subset captures the "essential" attributes of 
the object, then the user need not be concerned with the object itself but only 
with the abstract attributes. 

A collective link of the pattern P to the object C of the category is a family of arrows 
fi, indexed by the nodes of the prototype G, where /,• is an arrow from the component 
Pi to C, which satisfies the compatibility condition: if a is an arrow from t to j in the 

*SADT is a trademark of SofTech, Inc. 
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prototype, then ft is the composition of P(a) and /,-, ie 

fi = {PimPjJuc) 
An inductive limit of pattern P is an object C" of the category K such that, for any 

object C, the arrows from C to C are in one-one correspondence with the collective links 
from P to C. The unique arrow / associated with the collective link (/,•) is said to bind 

the /,s. 
Thus, the limit object binds together the component objects according to their internal 

organisation determined by the corresponding prototype. The component Pi of the pattern 
P is called a component object of the limit C". The properties of an object depend on the 
number and nature of the arrows which link it to other objects of the category K. It is 
natural to compare the properties of the complex object C" with those of its components. 

The category K models the environment of the pattern P. Modification of the envi- 
ronment category may take various forms. For instance, enlarging K to L or blurring the 
distinction between two K objects in L may make retaining the limits difficult. It may be 
that a pattern P cannot be bound to a limit in K but can be forced to have a limit in an 
extended environment L. 

A modification to the environment will be modelled by a functor F from K to a "new" 
category L. The image pattern of P by F is the pattern Q of linked objects in L defined 
by the composition of P and F. Functor F preserves collective links and cones but not 
necessarily limits. Changing the environment K may change the behaviour of a pattern of 
linked objects. This suggests the possibility of changing the environment purposely so that 
complex objects binding given patterns of linked objects may be formed. To achieve this a 
functor F from K to the "smallest possible" category L containing K must be constructed 
such that the image of each pattern P admits a limit in L, and the image of each given 
cone is a limit-cone. 

2.2    Hierarchical Systems 

A hierarchical system is a category K in which the objects are distributed on levels 
(0,1,... ,p), such that each object of level n + 1 (n < p) is the limit in K of a pattern P 
of linked objects on level n. 

In such a hierarchical system the system components are associated with levels corre- 
sponding to increasing complexity of their internal organisation. Any object at level n+1 
is the limit of a pattern of linked objects at level n but it may form part of a pattern of 
linked objects whose limit is at level n + 2. A functor between hierarchical systems pre- 
serves hierarchies if it does not raise the level of an object and, indeed, any two hierarchical 
systems may be compared from some particular level upwards. 
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2.3    Evolution of a System 

Software changes with time (in its development phase and during its use); new compo- 
nents are formed, either added from an external source or by construction from simpler 
components; old components may be re-organised or discarded. 

To model this situation the state of the system at "time" t is represented by a category 
Kt, and its state transition is determined by a functor from Kt to Kt„ its state at a later 
time t* (there is no requirement for the objects and arrows at t and t* to be the same). A 
component is "new" at time t if it has no earlier state. 

An evolutionary (hierarchical) system K is just a functor from a subcategory T of the 
category of time, Time, to a category of categories. 

To compare software process models within this system we need to define a morphism 
between evolutionary systems, ie. to compare states of the systems at corresponding times. 

Let K be an evolutionary system on T, and C an evolutionary system on U (a sub- 
category of Time). A morphism from K to t consists of a functor <p from T to U and a 
natural transformation from K to the composite of <p and £. This leads to the category 
of evolutionary systems. 

3    Conclusions 

A meta-model for the software process has been outlined. This is based on some elementary 
properties of categorical algebra. The meta-model provides the framework within which 
to discuss software process models, to compare them, and perhaps to develop new ones. 
The same framework can lead quite naturally to the design of a knowledge-based software 
design environment which promotes the notion of software process re-usability. 
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1    Introduction 

This note introduces the concept of path grammar, which allows the speci- 
fication of paths in a directed graph by a method generalizing the ordinary 
concept of grammar for strings in an alphabet. The concept of derivation 
and the special notion of context-free path grammar are defined. A pumping 
lemma for context-free path languages is stated. 

2    Graphs and 2-graphs 

By graph we mean a directed graph; we allow loops and we allow more 
than one arrow between the same pair of nodes. A graph generates a free 
category with the universal property that every graph homomorphism to the 
underlying graph of a category lifts to a functor. A node n of a graph is a 
source if there is a path from n to each other node of the graph, and a sink 
if there is a path to n from each other node in the graph. 

A 2-graph is a graph with possibly some 2-cells. A 2-cell may be thought 
of as an arrow between paths. Precisely, a 2-cell has a source and a target, 
each of which is a path in the graph with the same beginning and ending 
nodes. The source and target of the 2-cell may be the same and there may 
be more than one 2-cell between the same two paths. 

A 2-category is a category C with, for each pair of objects A, B, a 
category structure on Hom(A, B) satisfying certain requirements spelled out, 
for example, in reference \K\. The arrows of the category Hom(A, B) are 
called 2-cells. A 2-graph generates a free 2-category with universal property 
analogous to that of the free category generated by a graph. 
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3    Path grammars 

A path in a graph is a generalization of a string in an alphabet: it is a 
generalization because one can describe the characters in the alphabet as 
loops in a one-node graph. In general, one does not get arbitrary strings 
of arrows in the graph: they must compose head to tail. This suggests the 
possibility of describing the well formed programs of a programming language 
as paths in a graph in which the nodes are the types and the arrows are the 
operations. The composition operation is automatically typechecked in such 
a description. 

3.1 G rammars The concept of 2-graph allows the possibility of build- 
ing a theory of grammars for paths in a graph which is analogous to and 
incorporates the ordinary concept of grammar or production system. 

Definition 3.1 A path grammar Q = (G, V, T, S) consists of a 2-graph 
G whose arrows are the union of two disjoint sets V (the variables) and T 
(the terminals), together with a distinguished arrow S in V. The 2-cells are 
called productions. 

Definition 3.2 The grammar (G, V,T,S) is context-free if the begin- 
ning of every production is a path of length 1. 

3.2 Derivations A context-free grammar in the usual sense comes 
with the concept of a derivation tree of a string. The author is unaware of 
generalizations of this concept to larger classes of grammars. However, work 
of A. J. Power (P] leads to a natural general idea of derivation. 

Definition 3.3 A pasting scheme is a planar graph D with the following 
properties: 

P.l D has a source and a sink. 

P.2 For every interior face F of D, there are distinct vertices s{F) and t(F) 
and directed paths a(F) and r(F) from a(F) to t(F) such that the 
boundary of F is <T(F)[T(F)]

R. 

D is a context-free pasting scheme if for each face F, the path a{F) required 
by P.2 is of length 1. 

A pasting scheme D has a canonical 2-graph structure whose underlying 
graph is D and which has one 2-cell a(F): a(F) -* r(F) for each face F of 
D. 
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Definition 3.4 Let Q a (G, V, T, S) be a path grammar. A derivation 
consists of 

D.l A pasting scheme D. 

D.2 A 2-graph homomorphism h from the canonical 2-graph structure on 
the scheme D to 6. 

If the external boundary of D is arR, where a and r are paths from the source 
to the sink of D, and o and r are labeled via h by paths w and x respectively, 
then D is said to be a derivation of x from w. 

It follows from Theorem 3.3 of Power [P] that the 2-cells in a derivation 
compose to a unique 2-cell in the free category generated by G. In the case 
of an ordinary context-free grammar (so G has one node) a derivation is 
equivalent to what is called a derivation tree in |HU]. 

4    The language of a grammar 
Theorem 4.5 LetQ = (G,V,T,S) be a grammar. The language L(Q) 
of Q is the set of paths w in G with the properties: 

L.l All of the arrows in w are in T. 

L.2 There is a derivation of w from S. 

A set L of paths in a graph is context free if the graph underlies the 
2-graph G of a finite context-free path grammar Q and L is the language of 
9. 

When a grammar is applied to the specification of programs in a functional 
programming language, a particular choice of initial arrow S produces the set 
of all programs with specific input and output types. 

4.1 A pumping lemma The following theorem is a generalization 
of the pumping lemma for ordinary context free grammars and is proved in 
the same way. 

Theorem 4.6   Let L be a context-free set of paths in a graph G.   Then 
there is an integer n for which, if z is a path in L of length greater than n, then 

. there is a composable sequence {u,v,w,x,y) of paths in G with the following 
properties: 
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PL.l The composite vwx has length < n. 

PL.2 Both v and x are loops. 

PL.3 Either v or x is nonempty. 

PL.4 z = uvwxy. 

PL.5 For every nonnegative integer m. uvmwxmy € L. 

5 Remarks 

Context-free grammars have long been used as a first cut in defining pro- 
gramming languages. These do not completely define the language because 
of additional context-sensitive restrictions such as type checking and bound 
checking. Type checking, but not bound-checking, is handled automatically 
by the use of context-free path grammars. 

By adding equations on the paths and requirements on the nodes of a 
path-grammar which force them to be limits (as in the theory of sketches, 
[WB] and [W]) it should be possible to handle bound-checking as well. This 
is the subject of current joint work with A. J. Power. 
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Abstract 

We give a correspondence between enriched categories and the Gauss-Kleene-Floyd-Warshall 
connection familiar to computer scientists. This correspondence shows this generalization of 
categories to be a close cousin to the generalization of transitive closure algorithms. Via this 
connection we may bring categorical and 2-categorical constructions into an active but alge- 
braically impoverished arena presently served only by semiring constructions. We illustrate 
these techniques by applying them to BirkofF's poset arithmetic, interpretable as an algebra of 
"true concurrency.'' 

The Floyd-Warshall algorithm for generalized transitive closure [AHU74] is the code fragment 

for v do for u, tu do Suw + = Suv • Sv uutu- 

Here Suu denotes an entry in a matrix S, or equivalently a label on the edge from vertex u to vertex 
v in a graph. When the matrix entries are truth values 0 or 1, with + and • interpreted respectively 
as V and A, we have Warshall's algorithm for computing the transitive closure S+ of S, such that 
$£, = 1 just when there exists a path in S from u to v. When the entries are nonnegative reals, 
with + as min and • as addition, we have Floyd's algorithm for computing all shortest paths in a 
graph: 8+v is the minimum, over all paths from u to v in S, of the sum of the edges of each path. 

Other instances of this algorithm include Kleene's algorithm for translating finite automata into 
regular expressions, and Gauss's algorithm for inverting a matrix, in each case with an appropriate 
choice of semiring. 

Not only are these algorithms the same up to interpretation of the data, but so are their correctness 
proofs. This begs for a unifying framework, which is found in the notion of semiring. A semiring 
is a structure differing from a ring principally in that its additive component is not a group but 
merely a monoid, see AHU [AHU74] for a more formal treatment. 

Other matrix problems and algorithms besides Floyd-Warshall, such as matrix multiplication and 
the various recursive divide-and-conquer approaches to closure, also lend themselves to this ab- 
straction. 

This abstraction supports mainly vertex-preserving operations on such graphs. Typical operations 
are, given two graphs S, e on a common set of vertices, to form their pointwise sum S+e defined as 
(8 + e)uv = Suv + euv, their matrix product 5e defined as (Se)uv = 5U_ • e_„ (inner product), along 
with their transitive, symmetric, and reflexive closures, all on the same vertex set. 

We would like to consider other operations that combine distinct vertex sets in various ways. The 
two basic operations we have in mind are the disjoint union and cartesian product of such graphs, 
along with such variations of these operations as pasting (as not-so-disjoint union), concatenation 
(as a disjoint union with additional edges from one component to the other), etc. 

An efficient way to obtain a usefully large library of such operations is to impose an appropriate 
categorical structure on the collection of such graphs. In this paper we show how to use enriched 
categories to provide such structure while at the same time extending the notion of semiring to the 
more general notion of monoidal category. In so doing we find two layers of categorical structure: 
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enriched categories in the lower layer, as a generalization of graphs, and ordinary categories in the 
upper layer having enriched categories for its objects. The graph operations we want to define are 
expressible as limits and colimits in the upper (ordinary) categories. 

We first make a connection between the two universes of graph theory and category theory. We 
assume at the outset that vertices of graphs correspond to objects of categories, both for ordinary 
categories and enriched categories. The interesting part is how the edges are treated. 

The underlying graph U(C) of a category C consists of the objects and morphisms of C, with 
no composition law or identities. But there may be more than one morphism between any two 
vertices, whereas in graph theory one ordinarily allows just one edge. These "multigraphs" of 
category theory would therefore appear to be a more general notion than the directed graphs of 
graph theory. 

A staple of graph theory however is the label, whether on a vertex or an edge. If we regard a 
homset as an edge labeled with a set then a multigraph is the case of an edge-labeled graph where 
the labels are sets. So a multigraph is intermediate in generality between a directed graph and an 
edge-labeled directed graph. 

So starting from graphs whose edges are labeled with sets, we may pass to categories by specifying 
identities and a composition law, or we may pass to edge-labeled graphs by allowing other labels 
than sets. What is less obvious is that we can elegantly and usefully do both at once, giving rise to 
enriched categories. The basic ideas behind enriched categories can be traced to Mac Lane [Mac65], 
with much of the detail worked out by Eilenberg and Kelly [EK66], with the many subsequent 
developments condensed by Kelly [Kel82]. Lawvere [Law73] provides a highly readable account of 
the concepts. 

We require of the edge labels only that they form a monoidal category. Roughly speaking this 
is a set bearing the structure of both a category and a monoid. Formally a monoidal category 
D = {D,®,I,a,\,p) is a category D = (D0,m,i), a functor ® : D2 -+ D, an object I of D, and 
three natural isomorphisms a : c® (d® e) -* (c® d) ® e, \ : I ® d-> d, and p : d® I —► d. (Here 
c® (d® e) and (c® d) ® e denote the evident functors from D3 to D, and similarly for I® d, d® I 
and d as functors from D to D, where c, d, e are variables ranging over D.) These correspond to the 
three basic identities of the equational theory of monoids. To complete the definition of monoidal 
category we require a certain coherence condition, namely that the other identities of that theory 
be "generated" in exactly one way from these, see Mac Lane [Mac7l] for details. 

A D-category, or (small) category enriched in a monoidal category P, is a quadruple {V,S,m,i) 
consisting of a set V (which we think of as vertices of a graph), a function S : V2 —> JDo (the 
edge-labeling function), a family m of morphisms mUUU) : S(u,v) ® S(v,w) —► 8(u,w) of D (the 
composition law), and a family i of morphisms iu : I —► S(u,u) (the identities), satisfying the 
following diagrams. 

^£(ti,v)5(t/,to)£(iü,;c) 
(S(u,v) ® S(v,w))® 5{w,x)   ►   S(u,v)®(S(v,w)®S(w,x)) 

muvm ® 1 1® m vwx 

S(u,w)®S(w,x) ► S(u,x) <  S(u,v) ® S(v,x) 

ilB 



I®S{u,v)       ► 8{u,v) <       S[u,v)®I 

l'u® 1 

S(u,u) ® 8(u,v) 
T7luuw 

S(u,v) 
mv 

1® t„ 

5(u, v) ® 6(v, v) 

Inspection reveals the first of these as expressing abstractly the associativity of composition and 
the second as expressing the behavior of identities. 

Associated with the notion of P -category is that of P -functor F : A —► B where A and B are 
P -categories. This is just like an ordinary functor for its object part, mapping objects of A to 
objects of B via / : ob(A) —► ob(B). The usual morphism part of a functor now becomes a family 
TUV : 8A(u,v) -» Sß(fu, fv) of morphisms of P: 

SA(U,V) 

f        SB(fuJv)    , 

which compose vertically in the obvious way. 

The class of all D -categories and P -functors then forms a (large) category, called P-Cat. 

The category Cat of all small categories can now be seen to be Set-Cat. Rendering this abstraction 
more accessible and appealing is the very pretty case P = R>p

0 = {{R>o, >),+,0), reverse-ordered 
nonnegative reals under addition, for which R-Cat becomes the category of (generalized) met- 
ric spaces, with the composition law as the triangle inequality and functors as contracting maps 
[Law73]. Enriched categories first appeared in computer science with P = Poset = (Poset, x,l) 
[Wan79] yielding order-enriched categories, a natural notion for domain theory. Poset itself is de- 
finable as (the antisymmetric subcategory of) (({0,1},—►),A,1)-Cat, categories enriched in truth- 
values. 

We may now make the connection with semirings. The enriching monoidal category {D, ®, I, a,^,p) 
has for Do the set of edge labels, for ® the semiring multiplication, and for its coproduct (which 
therefore needs to exist in P) the semiring addition. The usual requirement of distributivity of mul- 
tiplication over addition is met when when P is biclosed—® has a right adjoint in both arguments— 
with P closed corresponding to one-sided distributivity. (In these situations P cartesian closed is 
the exception rather than the rule.) 

Although the literature has tended to make enriched categories seem if anything more abstract and 
forbidding than ordinary categories to most computer scientists, this perspective puts enrichment 
in quite a different light for those familiar with the Floyd-Warshall connection. For P a preorder 
with finite coproducts, enriched categories simply become the reflexive and transitive edge-labeled 
graphs output by the Gauss-Kleene-Warshall-Floyd algorithm. For P not a preorder, such as Set or 
Cat, yielding respectively ordinary categories and 2-categories, the notion becomes more involved 
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(to which a categoriphobe might say "Ah, so that's the problem") but necessarily so for Gauss's 
algorithm, whose semiring addition is not idempotent. 

This is a nice perspective in its own right, but it becomes considerably more useful when the 2- 
categorical structure of P-Cat is brought to bear on the description of particular algebras. We 
illustrate this by applying it to the categorical treatment of Birkhoff's arithmetic of posets [Bir42] 
and its generalization to other metrics besides the truth-valued metric used for posets. This arith- 
metic provides a nice abstraction of the sort of concurrency operations we have been advocating 
[Pra86] to make the "true concurrency" or partially-ordered-time approach more algebraic 

Birkhoff defines six operations on posets: addition, multiplication, and exponentiation, each in 
a cardinal and an ordinal version, as a way of unifying cardinal and ordinal arithmetic. (In the 
concurrency connection cardinal vs. ordinal corresponds to parallel vs. sequential.) The cardinal 
operations are conveniently described as universals in Poset, the ordinals not quite so conveniently 
categorically, but 2-categorically ordinal addition becomes just cocomma, indicating that the move 
from parallel to sequential can usefully be accompanied by a move from categories to 2-categories. 

Birkhoff arithmetic admits useful generalizations to other semirings qua monoidal categories, suit- 
able for modelling real-valued time in various forms: upper bounds, lower bounds, intervals, and 
arbitrary sets of reals, each associated with a specific monoidal category, but with the definitions of 
the associated arithmetic operations unchanged. These generalizations in turn suggest additional 
constructs, also definable universally, that would have been meaningless or degenerate in Birkhoff's 
original framework, but that have useful applications to the specification of real-time processes. 

The prospect of a connection with Girard's linear logic obliges us to point out that as both an 
expansion and a nonconservative extension of the above theory, linear logic with negation is too 
strong for the purposes of making the connections of this paper, which are more appropriately 
described as aspects of a fragment of linear logic. 
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Abstract: Generalized automata are a tool for efficient algorithms design... 

A short introduction to the usual Tree Automata: The definition is a natural 
generalization of the usual word automata, (see for example [5,17,26] for the algebraic frame and 
[22] for the algorithmic point of view). From an "algebraic data types" point of view, states can 
be seen as sorts of an underlying ordered sorted algebra [2]. 

Example: Let M the (bottom-up, i.e. frontier-to-root) tree automata defined by the ranked 
alphabet A, the set S of states, the set F of final states (F is a subset of S) and the set R of rules 
(each rule can be seen as a signature): 

A - {+.V.-, sue, 1,0}. +,*,/ and - are binary operators (rank 2); sue is unary (rank 1); 
1 and 0 are constants (rank 0).   S = {isal, inl. bQ2l}; 

rules: o -»isal; o -» ini; o -»bool; 1 -» real; 1 -»inl; 1 -> tool; 
+( real. real! -» ££3l; +(ini, inl) -» iOL ;   +( bQQl. baol) ~> fcfiOl > 

*( laaL isaD -> isal; *( inl. inl) -* InL;  *( haaL baol) -> booi ; 
-(teaL isal) -> isal; -(inl, inl) -> ini-; /(i£aL isal) -> isal; suc( im) -»im 

iOi -> xaai (sorte inclusion is denoted by this special kind of rule without fonction symbol, 

also called £-transition) 

Intuitively, the automaton M computes from the leaves to the root the sort of a term t. (M[t] 
denotes the set of states reached by M at the top of t). It fails if a term is bad-sorted and it is 
non-deterministic because a term can get several sorts. M is said deterministic iff no M[t] 
contains two states. 

Example:  M[0]  - (real. Int. booll: M[-{1,1)] - {l£aL, inl };    M[/(1,+(1,1)] = {isal} ; 
M[suc(/(1,+(1,1))]    is empty (i.e. M fails). 

A term t is recognized iff M[t] contains at least a final state. A set of terms is recognizable iff 
it is the set of terms recognized by some automata. 

There exists an algorithm of non-determinism reduction and an algorithm of minimalization; 
they work like in the word case. So, M' below is the minimal deterministic automaton equivalent 
to M. 

rules of M": 0 -> rib ; 1 -> rib; +(rib,rib) -> rib ; *(rib,rib) -» rib ; -(rib.rib) -» ri; 

/(rib) -> r ; succ(rib) -> i ; +(ri,rib) -> ri ; +(rib,ri) -> ri; +(ri,ri) -» ri; *(ri,rib) -» ri 

; *(rib,ri) -> ri; *(ri,ri) -* ri; -(ri.rib) -> ri ; -(rib.ri) -> ri; -(ri.ri) -* ri; -(rib.rib) 

-> ri; /(ri) -^ r ; succ(ri) -* i ; +(i,rib) -^ i ; +(i,ri) -» i ; +(ri,i) -» i ; +(r,rib) -> r 
etc... etc... . (intuitively, ri can be identified to {leal, inl} etc... . 

Remark that the semantic of M is clear but not that one of M' . It is very usual to translate 
some algorithm (or to compile some program) to get an efficient but "non-signifiant" algorithm. 
Here, M' is very efficient in time but the number of rules can exponencialy increase for obvious 
reasons. The complexity of the non-determinism reduction is coded in other usual problems, as 
equivalence of two automata. Nevertheless, in usual cases, the number of rules does not increase a 
lot. Furthermore, it is possible to use dynamic programming ä la Morris and Pratt to get linear 
classes of algorithms (like for recognizion of a term or a subterm). Efficient algorithms are 
designed using transitive closure, by a way closely related to congruence closures in graphs 
[27 33]. 

An important toolbox is available; it links the algebraic point of view (i.e. the specification 
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point of view) and the algorithmic point of view. Roughly speaking, it generalizes the Kleene 
theorem: - for any specification, compile the best algorithm". A lot of algebraic tools have been 
studied. Some are usual from the categorical point of view but sophisticatedI transducer;, ( a little 
too much complicated!) have also been introduced to modelize compilation [18]. Most of them have 
realistic algorithmics properties. , 

This was a very short sketch of the present situation. Using these tools, and tedious ana lys.s of 
tree structures ( as in formal language theory) we recently solved the following problems (stated 
in F51 ri41 [23], [24], [31]):Decidability of the confluence of ground term rewriting systems 
F91 Viol- Decidability of the fair termination of ground term rewriting systems [371; 
^decidability of the stability of recognizability under saturated congruence [36]; Undec.dab.hty 
of code problem for non-linear trees and other structures [1]; Decidability of equality of the 
yields of rational infinite trees [8]; Undecidability of termination of a left-linear rewriting rule 
fill We are designing a software (VALERIAAN, in Prolog [11] .[ [13] ) for theorem prov.ng 
first and second order reachability problems [31], etc... in some classes of term equations and 
rewriting We get an optimised compiler of term rewriting which solves first order reachability 
in linear time. Roughly speaking, we use dynamic programming, generalizing the famous Morns 
and Pratt pattern-matching algorithm. 

An example of automata used to solve a problem. 
The problem of decidability of the confluence of ground term rewriting systems was stated by 

Huet. We solved it recently by the way sketched below.( see [9], [10]) 
Definition of the class G7T of ground tree transducers (gtt): let A = {(Lj,Rj)|0<i<n} a finite 

set of pair of recognizable sets of trees. The corresponding gtt A is defined by 
(u,v)e   A     iff there exists t(x1 xp) u1,...up, v1 vp such that, u=t(u1,...,up), v = 

t(vi vp) and for all   i (1<i<p) there exists (Ljj.Rjj) in A such that, ui e Ljj and vi 6 Rjj 
1/ Using tree automata technics we prove that : (i) the inverse of a gtt is a gtt; (ii) the 

composition of two gtt is a gtt; (Hi) the precongruence closure of the union of two gtt is a gtt; 
(iv)the iteration of a gtt is a gtt. 

21 Then it is obvious that the relation R associated to a ground term rewriting system R is a 
gtt (is suffice to remark that a ground rewriting step is a gtt  and use 1/) 

3/ Ft is confluent iff R oR "1 C R "1ofl (obvious). We then can to code R onto a 

recognizable tree langage and then reduce the confluence decision to the inclusion of recognizable 

tree langagues. ♦ ♦ 

Furthermore, using this characterization of ground term rewriting systems, we get efficient 
algorithms to solve reachability problems (see VALERIAAN). (Gallier & all. [29,30] recently 
extended the method of matings due to Andrews to first order languages with equality; they proved 
that the method of equational matings remains complete when used in conjunction with a restricted 
kind of E-unification (rigid-unification) using ground rewriting). 

Related works and further works:   logic and   automata. 
One of the motivations of tree automata was decision problems of second-order logic. [34] 

Recent and important works studied connection between logic and automata [6,35]. 
The general goal is to associate to a logical system a class of automata to get decision properties 

on the underlying objects (finite or infinite words, trees, graphs)[28,29,30]. This way provides 
very powerful results, which associate to logical specifications (which can be seen as a veryvery 
hight level of specification) decision algorithms by the way of automata on different algebraic 
structures. Unfortunately, the complexity of these algorithms is not realistic. An algebraic and 
algorithmic study of automata on these structures could provide, at an intermediate level of 
specification including heuristics, useful tools for an interactive design of   efficient algorithms. 

Our study of weighted graphs, which generalizes usual infinite rational trees and provide a tool 
for decision and compexity analysis in Logic Programming, illustrates this way. The algebraic 
structured can been drawn as following [7,15,16]: 



usual directed graph weighted directed graph 

<XP 
unfolding unfolding 

x-5 

usual rational infinite tree generalized rational infinite tree 

An other way is to extend recognizable sets of trees to recognizable sets of trees with some kind 
of equality control between subterms [0,2,3]. For example, we considere automata rules which 
check equalities of subterms [0]. We extend the classes but we keep good decision properties. The 
results can be used for some decision problems in algebras containing terms with non linear 
signature. 
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Category-Sorted Algebra-Based Action Semantics 

Susan Even and David Schmidt 
Computing and Info. Sciences Dept. 
Kansas State University 
Manhattan, KS 66506 USA 
schmidt@cis.ksu.edu 

In a series of papers [5,6,7,8,14,15], Mosses and Watt define action semantics, a metalanguage for high level, 
domain-independent formulation of denotational semantics definitions. Action semantics hides details about 
domain structure (e.g., direct semantics domains vs. continuation semantics domains vs. resumption seman- 
tics domains) and coercions (e.g., integers into reals, injections of summands into sum domains) to encourage 
readability and modifiability. Action semantics notation is of interest as a programming language of itself, 
for its components (called actions) are polymorphic operators that can be composed in three fundamental 
ways. 

We have formulated a model for action semantics based on Reynolds' category-sorted algebra [10,12]. 
In the model, actions are natural transformations, and the composition operators become compositions in a 
weak "3-category"-like structure. We have used the model to prove the soundness and completeness of a 
unification-based, decidable, type inference algorithm for action semantics expressions. The proof is notable 
for its simplicity. 

Action Semantics 

Actions are combinators; they operate upon kinds. (Mosses calls them facets [5,7]). A kind is a collec- 
tion of types; for example, the functional facet is the kind of all types that can be used as temporary values in 
a computation. The types int, bool, real, boolxreal, and so on, belong to the functional facet (Other facets 
include the declarative facet, which contains types of identifier, value binding, and the imperative facet, 
which contains types of storage structure.) The types in a kind are pre-ordered to reflect subtyping relation- 
ships [1,9,11]. 

Actions are polymorphic mappings on kinds. For example, the action copy is the identity mapping on 
the types in the functional facet, and the action succ also maps functional facet values to functional facet 
values: it increments int and real values, and it maps non-numbers to a nonsense value. Actions exist for all 
the fundamental operations of programming languages: value passing, arithmetic, binding creation and 
access, storage allocation and updating, and so on [5,7,8]. 

Actions can be composed. Arguments to a compound action may pass from one component action to 
the other sequentially, in parallel, or conditionally. For example, the compound action copy; succ accepts a 
functional facet value that is passed sequentially from copy to succ, and the output is the incremented value. 
The action copy*succ accepts a value, which is given in parallel to both copy and succ. The two results— 
the value and its successor— are merged together into a pair. Finally, copy I succ accepts a value, which is 
conditionally given to one of the two actions, based on the typing of the value. The three compositions are 
used to define derived compositions that describe value flows found in programming languages. For exam- 
ple, * and ; are combined to describe the flows of bindings and storage, respectively, in command sequenc- 

ing- 
Coercions of arguments and results of actions occur implicitly and naturally (that is, the placement of 

coercions does not affect the output of an action). For example, if an int argument is given to succ, but con- 
text demands a real answer, an implicit coercion can occur either on the argument or on the answer and the 
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result is the same in either case. 
An action semantics may possess many kinds, and the kinds can themselves be preordered. The compo- 

sition operators respect the subkinding. 

Category-Sorted Algebra 

Action semantics demands a model that supports the Scott-domain thoery upon which denotational 
semantics is based. Scott-domains, subdomain relationships, and polymorphic operations are naturally 
described within category-sorted algebra (csa) [10,12]. The appendix gives a precise definition of a csa; here 
we supply an example of one in the form of a sample functional facet. Let {copy, succ} be a set of action 
names and let A be the poset of type names: 

ns 

/\, real bool 

int 

Let Tcopy be the identity operation on the poset, and let Tsuce map int to int, real to real, and bool and ns to 
ns. (Tcopy and Tsucc are the "typing functions" for actions copy and succ.) Now, (A, {Tcopy,Tsucc))formsa 
single-sorted algebra (ssa); the ssa plus the operator set [copy, succ] form a signature for a csa. 

The carrier of the csa is a functor F: A =>Pdom (Pdom is the category of predomains, i.e., "bottomless 
epos") that maps int to Z, real to R, bool to B, and ns to 1 (the terminal object in Pdom). The functor inter- 
prets the type names and the coercion mappings between them. The operators are interpreted as natural 
transformations: the copy operator becomes the identity natural transformation in F -^ F ° Tcopy, and the succ 
operator becomes a natural transformation in F-^ F ° Tsucc. The natural transformations respect the coercion 
maps established by the carrier. 

Other facets are defined similarly. Indeed, the complete structure of action semantics is defined as a csa 
of a csa, where the first csa defines the facet hierarchy (of which the poset seen above is part), and the second, 
many-sorted, csa defines the interpretation of the facets (of which the csa seen above is part). 

The csa framework accommodates direct and continuation-style denotational semantics for actions. An 
action like succ can be defined as a natural family of direct semantics functions in Expressible- 
Value-* Expressible-Value or as a natural family of continuation semantics functions in (Expressible- 
Value -» Answer) -» (Expressible-Value -> Answer). 

Applications 

Action semantics expressions are uncluttered by typing annotations; nonetheless, such annotations are 
invaluable to analysis and implementation. We have defined a unification-based type inference algorithm 
that annotates an action expression with a typing scheme that indicates its sensical behavior in its context of 
use. 

The algorithm assigns primitive type schemes to primitive actions. For example, the actions copy and 
succ are given type schemes: 

copy: 0 -»0 
succ: 0->0 if Q<real 

The second scheme says that succ has an answer type that matches its argument type if the argument type 0 
satisfies the constraint  Q<real  [3,4]. 

A composed action expression has its type scheme inferred from the types of its components. For 
actions: 
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a\.<5\ ->Xi if C\ 
and 

ö2:o2~*'t2 '/ Q 
the algorithm infers: 

(flX; a2): J/O! -> I/X2 1/ tf(Ci u C2) 
where t/ is the most general unifier of X\ and a2. Other forms of composition are treated similarly. 

Let action a have a typing function Ta in the csa interpretation. A typing scheme a:a-*x if C is 
sound if, for all substitutions U such that Uo is a completely instantiated type name and U(C) is a set of com- 
pletely instantiated constraints that hold true, Ta(Ua)=U%. The scheme is complete if, for all types /, 
Ta(t)*ns implies there exists a substitution U such that Uo=t and U(Q is a completely instantiated set of 
constraints that hold true. 

We have proved the soundness and completeness of the type inference algorithm. No complex proof- 
theoretic techniques are needed to establish the results, because the csa model provides simple, significant 
information in the form of the Ta typing functions. Further, the model discourages formulation of a type 
inference algorithm that attempts to insert explicit coercions. Since actions are natural transformations, coer- 
cions are unnecessary; the actions must respect the subtyping ordering, whether coercions are used or not. 
Finally, the inference algorithm is decidable, since natural transformations are "shallow universally 
quantified" (like the polymorphic operators in ML). Thus, many of the sticky problems found in type infer- 
ence for programming languages with polymorphism and subtyping are avoided by selection of the csa 
model. 

We have also implemented a prototype interpreter for action semantics along the lines of [14] but with a 
more careful treatment of the facet flows to actions [2]. 
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Appendix 

The notation and definitions are from [12]. Let S=(Ob(S),Mor(S), «) bea category; assume that S has 
finite products. 

Definition: An Q.-signature is a pair (Q, ar), where Q is a set of operators, and or. Q.^>N is a function 
that gives the arity of the operators. 

Definition: A (single-sorted) Sl-algebra (based on S) is a pair A = (IAI, {Aa I coe ß}), where 
IAI e Ob(S) is the carrier of the algebra, and for each coe fl, operation A^: IAIar(0 -> IAI is in Mor(S). 

Definition: An Q.-T signature is a triple (Q, ar, T), where Q. and ar are defined as above, and T is an Q- 
algebra based on PreO. (PreO is the category of preordered sets and monotone mappings.) 

Definition: An Cl-T category-sorted algebra (based on S) is a pair A = (IAI, {Am I coe Q}), where 
IAI: I T\ =$S, the carrier of A, is a functor from I T\, treated as a category in the usual way, to category 

S; and for each coe fi, operationAo,: IAIar£0-^ IAI »70 is anatural transformation, where rw is treated 
as an endoftmctor on I T\. 

The above definitions easily generalize to many-sorted algebras and category many-sorted algebras. 
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THE DE BRUDN ALGEBRA 
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ABSTRACT : The substitution process of de Bruijn calculus is analysed with an equationnal theory, 

called the "de Bruijn Algebra*. Two optimisations are described by equations, which can be oriented into 

term rewriting systems: parallel substitution and a "labelled" substitution delaying the recoding of the 

argument free variables. 

KEYWORDS : A-calculus, de Bruijn calculus, substitution, algebra, equational theory, term rewriting 

system. 

Introduction 

Implementations of functional languages rely on A-calculus as a firm mathematical ground. Lambek [3] 
showed a close relation between typed A-calculus and Cartesian Closed Categories {CCC in the sequel), 
and later, Curien [2] used Lambek's formalism to show, that A-terms in de Bruijn's notation [1] could 
be translated into CCC-terms. This approach led to an efficient implementation of the language ML, 
(originally developped at the University of Edinburgh). The Categorical Abstract Machine — on which this 
implementation is based — performs weak reductions and takes advantage of the pairing of functions and of 

the polymorphism of the "categorical combinators". 

In [4], we have studied an implementation of a functional language based on strong reduction: programs are 
untyped A-terms internally coded with de Bruijn's notation, and its semantics is given by the head normal 

form. 
In A-calculus theory, substitution is treated as a one-step process, and this is unsuitable for practical imple- 
mentations. This remark led us to study substitution more carefully. We have derived various substitution 

algorithms from our algebraic approach which formalize this process and improve it. 

We shall introduce an abstract algebra, that we have called the "de Bruijn Algebra" — dB A for short — 
which is directly inspired by CCC and Curien's work. This algebra defines an equational theory where the 
substitution process is entirely decomposed and simu/atedby its axioms. Moreover, we shall not be restricted 
by typed terms: we can forget about typed theory, and formal computations in dB A will serve the untyped 

A-calculus theory as well. 

* C.R.I.N. UA CNRS 262, BP 239, F-54506 VANDCEUVRE CEDEX, and L.I.F.L. UA CNRS 369, UFR d'I.E.E.A. 

Bät.M3. F-59655 VILLENEUVE D'ASQ CEDEX 
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Definition 

We give the "strong rules system» of [2] (p.10) with our notations (and name). Then, the standard substi- 
tution algorithm in de Bruijn's notation is recalled. 

The de Bruijn Algebra is defined as follows: 

0-arity operators (i.e. constants): x, x*, id, 

unary operators: A., # and +, 
binary operators : • (this dot will in fact be ommitted) and o. 

If / € dB A, the results of each of the three unary operators are respectively noted: (A./), f* and /+. 

With these notations, the axioms of dB A are: 

(1) (A./)j = /oj/# 
(2) (/OJ)OA = /O(JOA) 

(3) (A./)off = A.(/o«,+) 
(4) {fg)oh = (foh)(goh) 
(5) TO/+ = /O* 

(6) Ttof+ = x' 
(7) xof* = id 
(8) r'of*=f 
(9) idof = f 
(10) foid=f 

Some intuitive feeling can be caught from CCC : each of these axioms are indeed simple theorems of 
CCC theory, o is borrowed from the composition of arrows, id comes from the identity arrow, x and 
x* correspond respectively to the first and second projections of cartesian categories. If f:Ax - A2, then 
/+^xS-A2xS is (/ox, x>) , and f*:Ax ^i x A2 is (idAl, f). In a cartesian closed category, we 
have two maps App: (*') x A - B and A, (A x B - C) - {A - C*), such that, for any /: A x Br - C 
A./ is the unique map satisfying Appo (A./)+ = /. Now, if /* is defined as Appo(f,g) (1), (3) and 
(4) above are easy consequences of these definitions. For example, let's first notice that f+ o g* _ {J,g) 
and /+ o g+ = (/ o <,)+ in any CCC, then fog* = Appo (A./)+ o ff# = Xpp o (A./,«/) = (A./)*, and 
/o<,+ = ^ppo(A./)+oJ7+ = APPo((A./)off)

+ =* (A./)oj = A.(/o«,+),byunicity. 

REMARK: In dB A we could not, for example, deduce (4) from the other axioms, contrasting with the proof 
in a cartesian closed category using uniqueness of (f,g) = A such that x o h = f and x* o h - $. The 
same is true for (3), which must be taken here as an axiom. Our equational theory is weaker than CCC 
theory (which is of course not equational) but strong enough for A-calculus purpose, as we shall see shortly. 
Moreover, we have eliminated all couples explicitly since they are not present either in A-calculus. 

When the integer-coded bound variable n is interpreted by/ofo-oi (with n copies of x), as in [2], 
a A-term in de Bruijn's notation corresponds, without changing its syntax, to an element in dB A. The 
image of A-terms in dB A by this injective morphism will be noted dB. For the next two lemmas, we shall 

introduce some more notations : 

NOTATIONS: (i)   (/#)+ = f*+, (/+)+ = /++ etc.  and /#+■"+ = /«, if there are k copies of + ( 

particular fW=f*)- 
(if)  (x*)+'"+ = x** {k copies of +). 

IHO 
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LEMMA. With the preceding notations, for all k>Q and n > 0, we have : 

{H if  n < k, 
/OT»       if  n = k, 
n-1        if  n>k. 

LEMMA. For any / € dB and any integer d>0, the term fo*d can be reduced to a term g € dB by the 

following rules: 

(A./)ox^=A.(/oxW), 
(flf2)0Xd>k = {fl0**>'<){f20*i<>'), 

ik     in. ifn<k, 
*°*'  -\n±d      ifn>k. 

It is easüy checked that, for any / 6 dB, the new terra produced by the reduction of /o *" is identical to 
/ except for the free variabies which are all recoded by increasing their code by n. 

By definition, substitution of a dB-term g in an other dB-term f consists in reducing f o g*. 

We have the following main result: 

THEOREM. If M and N are two A-terms, and M and N their respective counterparts in dB A, then: 

dB A r-M = N <=» \r-M = N 

Substitution improved 

We shall show how to prove the correctness of two optimisations of the standard substitution algorithm with 
the help of dB A. In fact, from equalities in dB A, we get the recursive algorithms we are looking for. 

1 — Parallel substitution 

We want to get here an algorithm for parallel substitution. 

NOTATIONS: for k > 0, let g W = g[f+k~l] o • • • o $]. 

LEMMA, (i) {\l.f)gig-i•■•gt = f°g[0]. 

(HJ     (A./)o*M«A.(/oyl*+i])f 

(Hi)     (/1/2) o9W = (A ° 9[k])(h o gW), 
{n if n< k, 

gi-n+k o 3rfc        if k < n < k + £, 
n-l ifn>k + L 

(i) shows what we want to compute and is easily checked, (ii), (iii) and (iv) give a deterministic algorithm, 
when interpreted by rewrite rules (orienting equalities from left to right) on dB : only one of the three rules 
can be applied to a given dB-teim, depending on its structure (i.e abstraction, application, or variable). 
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2 — Labelled substitution 

Our aim is to delay the recoding of the free variables of a substituted argument (this recoding is necessary 
in the standard algorithm), so that sharing can be acheived. 

We are going to define substitution on a larger subset of dB A than dB. Indeed, "<fS-terms not yet recoded" 
are of the form fox4, with / € dB and d > 0. These terms will be called "labelled terms" and the subset 
of dB A they form will be noted IdB. In dB, redexes are simply (X.f)g, now we have to consider also those 
of the form ((A./) o xd)g. The new substitution will perform at the same time the recoding of (A./) and 
the substitution of the argument g. Moreover, recoding of g will not be computed, but delayed. 

NOTATIONS: (t) (xd)+ og*= gW , 

(it) gWk ss j(d)+"+ if there are k copies of +. 

LEMMA, (i) ((A./)oxd)gs/oj», 

(ü)   (AA)OF»* = ifxo*M*)(A o,M»), 
(Hi)   (A./)o,M*«A.(/o,M<*+»))> 

if n<k, 
(iv)    no jM* =lgovn ifn = k, 

■ ifn>k, [n+d-1 

,  ,     -*       Ml*       fjl^l-^o/ f/^<Jb, 

Again, from these equalities converted into a term rewriting system on IdB, we get a substitution algorithm 
on labelled terms. The last case (v) shows how to deal with substitution into a labelled term, say / o x : 
if the label d> is greater than the depth ib where g is to be substituted, it is clear that there will be no free 
variable with a code equal to k and consequently no occurrence where to substitute g, hence, in that case, 
we get a simple result viz. xiJfi!"x (as it can be checked). 

REMARK: The two algorithms could be mixed to produce a "parallel and labelled" substitution (see [4]). 

Conclusion 

We have presented an abstract algebra, the de Bruijn Algebra, which contains the set of A-terms in de 
Bruijn's notation, and also other interesting terms like the so-called "labelled (de Bruijn) terms". The sub- 
stitution process can be investigated in great details with this algrebraic approach. We have indicated how 
various substitution algorithms can be deduced from the standard one and how to improve it. Other results 
converging to an efficient implementation of A-calculus can be found in [4]. They are based on the notion 
of re/ocaJisation of redexes, which allows to interpret the integer codes of the variables as offset-addresses in 
a stack of arguments and prove the correctness of abstract machines. 

Finally, let's mention that if one is interested by »/-reduction, the foUowing axiom would have to be consid- 

ered : A.(/ o *-)x' = /. 
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A Game Characterization of the Observational Equivalence of Processes 
(Extended Abstract) 

M. Haut Oguztuzun 
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This preliminary work is concerned with the characterization of the observational equiv- 
alence of processes in model-theoretic terms. First, the Ehrenfeucht game is extended by 
introducing a condition of "compatibility", and then it is shown that the equivalence in- 
duced by the extended game with an appropriate notion of compatibility coincides with 
observational equivalence. Second, a subclass of first-order languages is defined by "trans- 
lating" this specific compatibility notion into a syntactical constraint. It is conjectured that 
the language thus obtained corresponds to the extended game in the sense that a first-order 
language corresponds to the original game. 

The Ehrenfeucht game is played by two players, Player I and Player n, given two similar 
(relational) structures, A=<A,{Ri\i €l} > and B=<B,{S,|» el} > where I is some index 
set. With A [resp.B] we associate a reflexive relation, C>» [resp.Ca] on A [resp.B]. We 
call them the compatibility relations. Let n be a fixed natural number. We then denote 
the extended Ehrenfeucht game by Gn(A,CAyB}Cß). A play of this game consists of n 
rounds, each of which is played as follows. First, Player I chooses an element of either 
A or B. In response, Player II picks an element of the other structure. Each element 
must be "compatible" with the element chosen from that set at the previous round. More 
precisely, let a be the element of A [or B] chosen at round t. In the next round, for any 
player to choose an element c,+i of A [resp.B], CiC^Ci+i [resp.c,Csc,+i] must hold. At the 
end of the play, we have < ai,...,an >, the sequence of elements chosen from A, and 
< 61,..., 6„ >, the sequence of elements chosen from B. Player II wins the play of the game 
iff the correspondence between 04 and 6,- (1 = 1,..., n) is an isomorphism with respect to 
the relations of A and B. Otherwise Player I wins. 

We define a relation on similar structures by Player II having a winning strategy. This 
turns out to be an equivalence relation. More precisely, let A and B be two similar structures. 
We say that A is Gn-equivalent to B (w.r.t. C* and CB) iff Player II has a winning strategy 
in the game Gn(A,Cji,Bfiß). We say that A is G-equivalent to B iff A is Gn-equivalent to 
B for all n (given C* and CB). 

We model a process as a synchronization tree (st). An st is a rooted, unordered, la- 
belled, finitely-branching tree [4]. We can view an st as the unfolding of a nondeterministic 
state transition system with "silent" moves. Formally, we represent an st A as a structure 
A=<A,{ÄM||* € A; r}, OQ >,where A is a countable set (of nodes, or states), A is a finite set 
(of labels) and r fi A, ÄM (/i € A; r) are binary relations on A (arcs, or transitions), and 
OQ €A (the root, or initial state). (Notation: A;r = AU {r}.) The silent transition R? has 
to be reflexive. So we have a self-loop labelled r at each node. 

We define the observational equivalence on sts (denoted «) as follows. 
Let two ate A and B be given as above. Then, let =>M be the closure of Rß under left and 
right relational compositions with £,., for p 6 A;r. We identify an st with its root. Now 
the definition: 
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A »o B. A «jfe+i B iff 
(i) A=*-ßA' implies B=>,lB' and A'wfcB' for some B*; and 
(ii) B^B? implies A=^ßA' and A'fUkB1 for some A'. 
A»B iff for all k A&kB. 

Given two sfe A and B, we consider the game Gn(A,^A,B,^B) where 
^=<A,{=*M |/i € A;r} > where =»" is denned as above (M € A;r), and the compatibility 
relation **A is defined as U^gA.r =>M. Similarly, we define S and ~>B for B. 

Theorem: Given two synchronization trees A and B. A « B iff the structures A and B 
defined above are G-equivalent (w.r.t. **A and ~*B)- 

Now, consider a first-order language £ with a finite number of two-place predicate sym- 
bols and a constant symbol, without equality. The predicate symbols are to be interpreted 
as relations =>" (/i € A;r), and the constant symbol is to be interpreted as the root. Let 
<p be a formula of L which is not tautologically false. Consider a formula <p' of I which is 
logically equivalent to <p and in the prenex-disjunctive normal form. Let ^ be a disjunct of 
the matrix of <p'. Define a relation >^ on the set of variables and the constant symbol as 
follows: x >^ y iff rff has an atomic formula Pxy or the negation of it as a conjunct. If >^ 
is merge-free for every disjunct 0 of the matrix then we call <p special U <p is tautologically 
false then we take it as special. (We call a binary relation R merge-free iff xRz and yRz 
implies x = y.) The subset C* of t is defined so that the formulas of £. are exactly the 
special formulas of Z. We say that two structures A and B are elementarily equivalent w.r.t. 
t* iff for any closed formula a of £,, A satisfies a iff B satisfies <r. 

Conjecture: Let A and 8 be two similar structures having a finite number of binary 
relations. Let their respective compatibility relations, ~^ and ^s be defined as above. A 
and B are G-equivalent iff they are elementarily equivalent w.r.t. £*. 

Related Work: The idea of observational equivalence is prevalent in Milner's work on the 
Calculus of Communicating Systems, see, e.g. [4,5]. The definition we adopt here is called 
the "weak observational equivalence" in [1]. This reference is a comparative study of several 
operational and logical notions of process equivalence. Hennessy and Milner [3] proposed 
a modal language to characterize observational equivalence. The game characterization of 
the elementary equivalence of similar finitary structures is due to Ehrenfeucht [2]. 
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Abstract: In this paper we consider branching time semantics for finite sequential processes 
with silent moves. We show that Miner's notion of observation equivalence is not preserved 
under refinement of actions, even when no interleaving operators are considered; however, 
the authors' notion of branching bisimulation is. 
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INTRODUCTION 
'virtually all semantic equivalences employed in theories of concurrency are defined in terms of actions that 
concurrent systems may perform (cf. [1-7]). Mostly, these actions are taken to be atomic, meaning that 
they are considered not to be divisible into smaller parts. In this case, the defined equivalences are said to 
be based on action atomicity. 
However, in the top-down design of distributed systems it might be fruitful to model processes at different 
levels of abstraction. The actions on an abstract level then turn out to represent complex processes on a 
more concrete level. This methodology does not seem compatible with non-divisibility of actions and for 
this reason, PRATT [7], LAMPORT [4] and others plead for the use of semantic equivalences that are not 
based on action atomicity. 
As indicated in CASTELLANO, DE MICHEUS & POMELLO [2], the concept of action atomicity can be 
formalised by means of the notion of refinement of actions. A semantic equivalence is preserved under 
action refinement if two equivalent processes remain equivalent after replacing all occurrences of an atomic 
action a by a more complicated process r(a). In particular, r(a) may be a sequence of two actions ai 
and a2. An equivalence is strictly based on action atomicity if it is not preserved under action refinement 
In a previous paper [3] the authors argued that MiLNER's notion of observation equivalence [5] does not 
respect the branching structure of processes, and proposed the finer notion of branching bisimulation 
equivalence which does. In this paper we moreover find, that observation equivalence is not preserved 
under action refinement, whereas branching bisimulation equivalence is. 

1. PROCESS GRAPHS 

As a simple model, let us represent a process by a state transition diagram or process graph. Such a graph 
has a node for every one of the possible states of the process, and has arrows between nodes to indicate 
whether or not a state is accessible from another. Furthermore, these arrows (directed edges) are labelled, 
with labels from Au{x}, where A = {a,b,c,...} is some set of observable signals, and i stands for a silent 
step (cf. [5]). 
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DEFINITION l.i A process graph is a connected, rooted, edge-labelled and directed graph. 

In an edge-labelled graph, one can have more than one edge between two nodes as long as they carry 
different labels. A rooted graph has one special node which is indicated as the root node. Graphs need not 
be finite, but in a connected graph one must be able to reach every node from the root node by following a 
finite path. If r and s are nodes in a graph, then r->as denotes an edge from r to s with label a (it is 
also used as a proposition stating that such an edge exists). In this paper we limit ourselves to processes 
represented by finite, non-trivial process graphs. A graph is finite if it is acyclic and contains only finitely 
many nodes and edges; it is trivial if it contains no edges at all. The set of non-trivial, finite process graphs 

will be denoted by G. 
In order to turn G into an algebraic structure, it is possible to define binary operators '+' and '•' for 
alternative and sequential composition. For any two graphs g and h the process graph (g + h) is 
obtained by simply identifying their root nodes, whereas (g-h) -often written as just (gh) - can be found 
by identifying the root node of h with all endnodes of g. Furthermore, constants from Au{x} are 
interpreted as one-edge graphs, carrying the constant as their edge-label. The algebraic structure allows us 
to study equational theories that emerge from any defined equivalence on G. For instance, in branching 
time semantics, one often considers observation congruence (cf. MILNER [5]) - written as =c - as a 
deciding criterion for equality in observable behaviour. Let us write r => r1 for a path from r to r" 
consisting of an arbitrary number (£0) of x-edges. Then its definition can be rephrased as: 

DEFINITION 1.2 Two graphs g and h are observation equivalent if there exists a symmetric relation 
R £ nodes(g)xnodes(h) u nodes(h)xnodes(g) (called a x-bisimulatiori) such that 
1. The roots are related by R. 
2. IfR(r,s)and r-^r* (a€Au{x}), then either a=x and R(r\s), or there exists a path 

s => si ->a S2 =» s' such that Rtf.s'). 
Furthermore, g and h are observation congruent if we also have that 
3. (root condition) Root nodes are related with root nodes only. 

The root condition was first formulated by BERGSTRA & KLOP [1], and serves to turn the notion of 
observation equivalence into a congruence with respect to the operators + and •. It can be proved that 
observation equivalence and observation congruence are equivalence relations on G, and that the latter is 
the coarsest congruence contained in the former (cf. [5,1,3]). It was shown in [1] that with respect to 
closed terms the model G/«0 is completely axiomatized by the theory 

x + y = y + x                   Al XT = X Tl 
x + (y + z) = (x + y) + z    A2 TX = TX + X T2 

x + x = x                          A3 a(xx + y) = a(xx + y) + ax T3 

x(yz) = (xy)z                  A4 
(x + y)z = xy + xz            A5 (a€Au{x}) 

The x-laws T1-T3 originate from MILNER [5], who gave a complete axiomatization for a similar model 
with prefixing instead of general sequential composition. From these axioms, it is easy to show why the 
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notion of observation congruence is not preserved under refinement of actions: replacing the action a by 
the term be, we obtain bc(xx + y) = bc(xx + y) + bcx from T3, which obviously is not valid in G/«0. By 
T3, we do find bc(xx + y) = b(c(tx + y) + ex) which unfortunately denotes a different process. 
Apart from the problem with refinement, it was observed in VAN GLABBEEK & WEIJLAND [3] that 
observation equivalence does not strictly preserve the branching structure of processes. This is because an 
important feature of a bisimulation (cf. PARK [6]) is missing for t-bisimulation, which is the property that 
any computation in the one process corresponds to a computation in the other, in such a way that all 
intermediate states of these computations correspond as well. However, in observation congruence, when 
satisfying the second requirement of definition 1.2 one may execute arbitrarily many x-steps in a graph 
without worrying about the status of the nodes that are passed in the meantime. 
In order to overcome this problem, in [3] a different notion was introduced, which yields a finer 
equivalence on graphs. 

DEFINITION 1.3 Two graphs g and h are branching equivalent if there exists a symmetric relation 
R c nodes(g)xnodes(h) u node(h)xnodes(g) (called a branching bisimulation) such that: 
1. The roots are related by R 
2. IfR(r,s)and T-**f (aeAu{t}), then either a=x and R(r*,s), or there exists a path 

s => si -»a s' such that R(r,si) and RCr'.s'). 
Furthermore, g and h are branching congruent if we also have that 
3. (root condition) Root nodes are related with root nodes only. 

Let us write R: g tab h if R is a branching bisimulation between g and h and R: g ö* h if, in addition, R 
satisfies the root condition. One can prove that the same equivalence is defined when in definition 1.3 all 
intermediate nodes in s => si are required to be related with r. Furthermore, observe that a branching 
bisimulation can also be defined as in definition 1.2, with as extra requirements that R(r,si) and R(r*,S2). 
It can be proved that branching equivalence and branching congruence are equivalence relations on G. 
Furthermore, the latter is the coarsest congruence contained in the former. It was shown in [3] that with 
respect to closed terms, the model G/±±ib is completely axiomatized by the axioms A1-A5 together with 

XT = X Bl 
x(t(y + z) + y) = x(y + z)      B2. 

Note that the axioms B1-B2 when applied from left to right only eliminate occurrences of x's. Using this 
property, it can be shown that the associated term rewriting system on G/SAI-A5» i-e- G modulo equality 
induced by the axioms A1-A5, is confluent and terminating. So any two closed branching congruent terms 
can be reduced to the same normal form. 

2. REFINEMENT 
In this section we will prove that branching congruence is preserved under refinement of actions, and so it 
allows us to look at actions as abstractions of much larger structures. Consider the following definitions. 
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DEFINITION 2.1 (substitution) 

Let n A -»G be a mapping from observable actions to graphs, and suppose geG. Then, the graph 

r(g) can be found as follows. 
For every edge r-^r" (aeA)in g, take a copy jial of r(a) (s G). Next, identify r with the root 
node of rial, and r* with all endnodes of r£ai. and remove the edge r ->a f. 

Note that in this definition it is never needed to identify r and r\ since graphs from G are non-trivial. 
This way, the mapping r is defined on the domain G. Note that since x« A, x-edges cannot be substituted 
by graphs. Finally, observe that every node in g is a node in r(g). 

DEFINITION 22 (preservation under refinement of actions) 

An equivalence = on G is said to be preserved under refinement of actions if for every mapping 

n A-> G, we have:   g*h => r(g)»r(h). 

In other words, an equivalence =» is preserved under refinement if it is a congruence with respect to every 

substitution operator r. 
Starting from a relation R: g t±rb h, we construct a branching bisimulation relation r(R): r(g) t±rb r(h), 
proving that preserving branching congruence, every edge with a label from A can be replaced by a graph. 

DEFINITION 2.3 Let r. A -» G be a mapping from observable actions to graphs, gji€ G and R: g ±*rb h. 
Now r(R) is the smallest relation between nodes of r(g) and r(h), such that: 

1. RcrCR). 
2. If r-»ar* and s-»as' (as A) are edges in g and h such that R(r,s) and R(r\s'), and both edges 

are replaced by copies jlal and ÄÜJ of r(a) respectively, then nodes from rXai and r^ä) are 
related by r(R), only if they are copies of the same node in r(a). 

Edges r ->a r* and s -»a s' (as A) such that R(r,s) and R(r\s'), will be called related by R, as well as the 
copies rial and r(a) that are substituted for them. Observe, that on nodes from g and h the relation 
r(R) is equal to R. Note that if r(R)(r,s), then r is a node in g iff s is a node in h. 

THEOREM (refinement) 

Branching congruence is preserved under refinement of actions. 

PROOF We prove that R: garbh => rtR): r(g) arb r(h) by checking the requirements. 
1. The root nodes of r(g) and r(h) are related by r(R). 
2. Assume r(R)(r,s) and in r(g) there is an edge r -»a r*. Then there are two possibilities (similarly in 
case r-^r* stems from r(h)): 
(i) The nodes r and s originate from g and h. Then R(r,s), and by the construction of r(g) we find 
that either a=x and r ->T r" was already an edge in g, or g has an edge r -»b r* and r ->a r1 is a 
copy of an initial edge from r(b). In the first case it follows from R: g örb h that either R(r\s) - hence 
r(R)(r\s) - or in h there is a path s => si ->T s' such that R(r,si) and RCr'.s'). By definition, the same 
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path also exists in r(h), and we have r(R)(r,si) and r(R)(r\s'). In the second case there must be a path 
s => si ->b s* in h such that R(r,si) and R(r*,s*). Then, in r(h) we find a path s => si -»a s' (by 
replacing ->b by r(b)) such that r(RXr,si) and rCR)(r\s'). 
(ii) The nodes r and s originate from related copies iflü and r(bj of a substituted graph r(b) (for 
some be A), and are no copies of root or endnodes in r(b). Then r ->a r* is an edge in rjQjl. From 
r(R)(r,s) we find that r and s are copies of the same node from r(b). So, there is an edge s-»as' in 
r(bj where s* is a copy of the node in r(b), corresponding with r\ Clearly r(R)(r,,s'). 
3. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is satisfied. D 

With respect to closed terms, the refinement theorem can be proved much easier by syntactic analysis of 
proofs, instead of working with equivalences between graphs. For observe that the axioms A1-A5 + Bl- 
B2, that form a complete axiomatization of branching congruence for closed terms, do not contain any 
occurrences of (atomic) actions from A. Now assume we have a proof of some equality s=t between 
closed terms, then this proof consists of a sequence of applications of axioms from A1-A5 + 
B1-B2. Since all these axioms are universal equations without actions from A, the actions from s and t 
can be replaced by general variables, and the proof will still hold. Hence, every equation is an instance of a 
universal equation without any actions. Immediately we find that we can substitute arbitrary closed terms 
for these variables, obtaining refinement for closed terms. 
Nevertheless, the semantic proof of the refinement theorem is important as one may wish to generalize the 
result to models of larger graphs than just finite ones from G. 
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Dialectical Program Semantics 
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Robert E. Kent 

Introduction 

Dynamic logic [Kozen] seeks to bring dynamic notions into logic and program semantics by basing this se- 
mantics and logic on the notion of "predicate transformer". The alternate program semantics of Hoare-style 
"precondition/postcondition assertions" is usually viewed as a special case of dynamic logic. Dialectical 
logic [Kent] seeks to bring dynamic notions into logic by basing logic (Lawverel on the notion of "dialectical 
contradiction" or, adjoint pair. How do these three logics connect together? This paper will show that 
dynamic logic and Hoare-style precondition/postcondition assertional semantics are exactly equivalent, and 
that dialectical logic subsumes both in the sense that "dynamic logic is the standard aspect of dialectical 
logic". More particularly, I show in this paper that the axioms of dynamic logic (or alternatively, precon- 
dition/postcondition assertional axioms) characterize precisely the dialectical logic notion of dialectical flow 
category (or alternatively, assertional category, a notion related but not equivalent to Manes's assertional 
category [Manes]). A dialectical flow category is a kind of indexed adjointness or dialectical base which itself 
is a dialectical enrichment of the notion of indexed preorder [Hyland]. In fact, a dialectical flow category is an 
indexed adjointness of subtypes which is locally cartesian closed. The indexing category here is the enriched 
notion of a join bisemilattice [Kentj. Dialectical flow categories objectivize the intuitive idea of predicate 
transformation or the "dialectical flow of predicates". 

Assertional and Flow Categories 

In this section we discuss the semantic structures appropriate for dialectical program semantics. The natural 
axiomatization indicated by these semantic structures, which is an alternate axiomatization of dynamic logic 
and expressed principally in terms of adjunctions, will be given in the full paper. 

A biposet is another name for an ordered category; that is, a category P = (P, <, ®,Id) whose homsets 
are posets under term entailment < and whose composition <8> called tensor product is monotonic on left 
and right. We prefer to view biposets as vertical structures, preorders with a tensor product, rather than 
as horizontal structures, ordered categories. The structural aspect of the semantics of dialectical logic is 
defined in terms of bisemilattices. A join bisemilattice or »emiexact biposet P = ((P, ^,®,ld),@,0) is a 
biposet whose homsets are finitely complete join-semilattices with j'otn terms *©r and bottom term 0y,a and 
whose composition (tensor product) is finitely join-continuous. P-objects are called types and P-arrows are 
called terms. Any distributive lattice is a one-object join bisemilattice, where tensor product coincides with 
lattice meet »®r = Mr. A morpkism of join bisemilattices P -+ Q is a functor which preserves homset 
order and finite homset joins. A complete Heyting category, abbreviated cHc, is the same as a complete join 
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bisemilattice; that is, a join bisemilattice H whose homsets are complete join semilattices (arbitrary joins 

exist) and whose tensor product is join continuous (completely distributive w.r.t. joins). Since the homset 

Hf*, *1 is a complete lattice, and left tensor product r® is continuous, it has (and determines) a right adjoint 

r ® * ■<»,» * iff * 1»,> rA* caUed lefi tenaor implication. Similarly, the right tensor product ®r has (and 
determines) a right adjoint t ® r <„ # iff* <,., *h «Hed right tensor implication. The category Rel 
(also denoted Mfh) of sets and binary relations (multivalued functions) is a cHc. Given an alphabet A, 

the category of formal ^-languages P{A*) is a one-object cHc (complete Heyting monoid), whose terms are 

formal languages, whose tensor product is language concatenation, and whose identity is singleton empty 

string {s}. More generally, every biposet P has an associated closure subset category P(P) which is a cHc: 

objects are P-types, arrows are subsets of P-terms y -5- x when R C P[y,x], and homset order is the closed- 

below order S < R when S C 1(A). Since every category C is a biposet with the identity order on homsets, 

the subset construction P(C) is a special case of the closure subset construction. 
For any type x in a join bisemilattice P a comonoid u at x, denoted by u:x, is an endoterm x - x 

which satisfies "coreflexivity" u <,,, x, stating that u is a "subpart" of the type (identity term) x, and 

«cotransitivity» u «a* u ® u. Since u ® u < x ® u = u, we can replace the «transitivity condition with 

the equality u ® u = u, which states that « is an "idempotent" term at type x. Comonoids are generalized 

subtypes. Comonoids of type x are ordered by entailment <£<.+. The bottom endoterm 0, = 0,,* is the 

smallest comonoid of type *. The join v 9 u of any two comonoids v:x and u:x of type x is also a comonoid 
of type x. Denote the join semilattice of comonoids of type x by Q(*). [Standardisation property:] O(i) 
is closed under tensor product; in feet, O(z) is a lattice, with the tensor product v ® u of two comonoids 
v,ueQ(x) being the lattice meet in Q{x), and the tensor product identity (or type) endoterm x being the 

largest comonoid of type x. Furthermore, the meet distributes over the join. This standardization property 

means that the local contexts (monoidal semilattices) of comonoids {Q(x) ! x a type} are standard contexts 

(distributive lattices), and shows why propositions (interpreted as comonoids) and programs (interpreted 

as terms) are subsumed by a single concept. In subset categories P(C) a comonoid of type x is either the 

empty endoterm x-t x or the identity singleton z {A} x, and these can be interpreted as the truth-values 

false and true, so that Q(x) is the complete Heyting algebra Q{x) 2£ 2. 
A Uoate triple or Hoare assertion v:y ± u:x in a join bisemilattice P, denoted traditionally although 

imprecisely by {v}r{u}, consists of a «flow specifying" P-term y i x and two P-comonoids, a "precondition" 

or source comonoid v€Q(y) and a "postcondition" or target comonoid u€G(*), which satisfy the "precondi- 
tion/postcondition constraint" «®r < r®u. Composition of Hoare triples {*/}»{t/}®{v}r{u} = M(»®r){u} 

is well-defined and {u}x{u} is the identity Hoare triple at the comonoid a:x. Also, there is a zero triple 

{„}0,,a{u} for any precondition »€Q(y) and postcondition uGfl(x), and if {v}r{u} and {v}*{u} are two 

triples with the same precondition and postcondition then {v}(r 0 «)W «■ aIso a triPle- So **P«d ^monoids 
as objects and Hoare triples as arrows form a join bisemilattice M(P) called the Hoare assertional category 

over P. There is an obvious underlying type/term functor M(P) -^ P which is a morphism of join bisemi- 

lattices. For each type x in P, the fiber over x is the subcategory TfHx) C K(P) of all comonoids and 

triples which map to *. The objects in Tfl(*) »» Ae comonoids of type x and the triples in TP »(*) are of 
the form {u'}x{u}, pairs of comonoids of type x satisfying u' < u. Hence, the fiber over x is just the join 

semilattice (actually, distributive lattice) of comonoids Tfl{x) = £!(*)■ 
For each type z in P, the lattice of comonoids 0(«) is a (one object) join sub-bisemilattice of P, and 

the inclusion functor 0(«) '-^ P is a morphism of join bisemilattices. Tensor product, which is lattice meet 

in Q(x), forms a local conjunction functor Q(x) &* JSL into the category of join semilattices, defined by 
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®x(x) = Q{x) = (0(a), e,0> and ®,(u) = Q(«) (-^* 0(s). Conjunction is a join semilattice functor. This 
example is a special case of the following construct. An indexed join temilattiee (P, G< )> consists of: 1. a join 

bisemilattice P, and 2. a join semilattice functor P SÜ JSL: (a) D* is a join semilattice for each type x; (b) 
n» °i Q* is a morphism of join semilattices for each term y -^ x called the direct flow specified by r, with 

G'(0) = 0 and D'(«/ 0 v') = D'(v) ® D'(v'); (<0 °(} is factorial, with D* = Ida., and ü*®* = G* • G'; 
(d) G< > is a join semilattice functor, (i) if r K . then G' < G', fii) 0° = A and (iii) n'«* = □' V tf. 
Equivalently, an indexed join semilattice is a join bisemilattice morphism H -» P, which, as a functor, is 
an indexed category (an opfibration). A direct flow category (P, □<)) is an indexed join semilattice, (3) 
which is standard on subtypes: (a) D* is a join subsemilattice of comonoids O* C 0(«) = (0(2), 8,0) for 
each type x; (b) □<' restricted to z-comonoids is the local conjunction functor Inc* • G(' = ®«; that is, 

' subtype direct flow D* ^ G* is just conjunction D'(u') = u' ® u for each comonoid u€ü'. Comonoids 
in G* and conjunction form a direct flow category (Ga,®a> for each type x. A morphism of direct flow 
categories (P, QP'U) -%-> <Q, G^'O) is a morphism of join bisemilattices P -^+ Q which preserves flow 
H • uQtl) = UF'lJ. So inclusion <a*,®»> lj^ <P, G(}) is a morphism of direct flow categories. 

A job bisemilattice P has direct Hoare flow when for any term y -4 a and any precondition i>6Q(y), 
there is a postcondition D'(tf)€0(z) called the strongest postcondition of r which satisfies the axiom Gf(v) < 
u iff v ® r i r ® u iff (t>:y -^ u:x)€Ar(^(P)) or G'(v) = A{« 6 0(a) | v ® r ^ r ® u} for any postcondition 
ueü(z). Also, D'(a4(w)) ^ a"*f(w) for any comonoid tueQC*). Some identities for the direct flow 
operator G<) are: G'(u') = u' ® u for all comonoids u€ß(z); D*®f(«) = D'(nJ(*)) for two composable 
P-terms z 4. y and y -^ x. A join bisemilattice P has ranges when for any P-term y-^ x there is a ran?« 
postcondition *i(r)eQ(*) which satisfies the axioms ^(r) i u iffr « r ® « and dM» ® r) = <9i(5i(«) ® r) 
for any postcondition ueQ(x) and composable P-term z -^ y. Some identities for the range operator <9i are: 
"subtypes are their own range" <?i(u) = u for any comonoid ueO(x); "the range of a subterm is the subterm 
of the range" d\{r ® u) = d\{r) ® u for any term y -^ x and any postcondition ueQ(x); and "only zero 
has empty range" <9i(r) = 0, iff r = 0,,, for any term y -^ x. If P has direct Hoare flow G( ], then it has 
ranges dx defined to be the direct flow of the top (identity) precondition <9i(r) = G'(y) for any term y -^ x. 
Conversely, if P has ranges, then it has direct Hoare flow defined to be the range of the tensor product 
(guarded term) 0'(v) = <M« ® r). A direct Hoare flow category is a join bisemilattice which has direct 
Hoare flow, or equivalently, ranges. A join bisemilattice P is a direct Hoare flow category iff the associated 
functor X(P) -2E» P is an indexed join semilattice (H(P),TP,P). In fact, any direct Hoare flow category is 

a direct flow category. 

Summary 

The most important improvement made by dialectical logic over dynamic logic is in the correct and rigorous 
treatment of subtypes. It is a serious conceptual error [Kozenj to view dynamic logic as a two-sorted structure: 
one sort being programs and the other sort being propositions. The central viewpoint of dialectical logic 
is that predicates (here called subtypes, or more precisely, comonoids) are special local idempotent kinds 
of programs (here called terms or processes), which by their idempotent and coreflexive nature form the 
standard logical structure of Heyting algebra in the intuitionistic case or Boolean algebra in the classical 
case. The two dynamic logic operations of program sequencing and predicate conjunction are combined 
into the one (horizontal) dialectical logic operation of tensor product of terms, and the two dynamic logic 
operations of program summing and predicate disjunction are combined into the one (vertical) dialectical 
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logic operation of boolean sum. Now, tensor product and boolean sum are global operations on terms. In 

addition, dialectical logic has complement operations called tensor implications and tensor negation [Kent], 

which are also global. In contrast to these, dialectical program semantics, introduces local complement 

operations called boolean implication and boolean negation. 
Global products and coproducts of precondition/postcondition assertions are defined in terms of biprod- 

ucts in the indexing category underlying a dialectical flow category. Biproducts model the semantic notion 

of «type sum'. Completely general axioms for domains-of-definition and ranges, and their negation duals 

kernels and cokernils, can be given, which are equivalent to predicate transformer axioms, and do not re- 

quire the notion of type sum. A nice program semantics has already been given [Manes] which is based 

upon the notions of sums and bikernels, but one of the purposes of this paper is to show that dialectical 

program semantics, the standard logical semantics of "relational structures», does not require sums and only 

indirectly requires bikernels. Iterates, the dialectical logic rendition of the "consideration modality" of linear 

logic [Girard], are denned as freely generated monoids, and dialectical categories with consideration modality 

are introduced to ensure the existence of iterates. The important doctrine of linear logic, paraphrased by 

the statement that "the familiar connective of boolean negation factors into two operations: linear nega- 

tion, which is the purely negative part of negation; and the modality of.course, which has the meaning 

of «affirmation", is verified in dialectical program semantics, since the local operation of boolean implica- 

tion (boolean negation) of subtypes factors into the global operation of tensor implication (tensor negation) 
followed by comonoidal support, the dialectical logic rendition of the "affirmation modality" of linear logic. 

Term horn-set completeness defines the notion of topology of subtypes, thereby making further contact with 
the affirmation modality. In such complete semantics, topologized matrices of terms are defined^and shown 

to be (categorically) equivalent to single terms via the inverse operations of "partitioning" and "summing". 
With the introduction of type sums a nontopological matrix theory is developed, where ordinary matrices 

of terms are defined and shown to be (categorically) equivalent to terms with biproducts. 
In summary, with dialectical program semantics we hope to unify small-scale and large-scale program 

semantics by giving a concrete foundation for the observation that "precondition/postcondition assertions 

are similar in structure to relational database constraints". I am now exploring the close connection between 

the functional aspect of dialectical program semantics and Martin-Löf type theory given via locally cartesian 

closed categories [Seeleyl Furthermore, there is a strong connection between dialectical program semantics 

and algebraic and temporal logic models of regulation in feedback control systems [Wonhami. 
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